MELINK SOLAR & GEO EXPAND ENERGY-SAVING OFFERINGS


Author: Steve Hamstra –

Melink Solar & Geo recently became a national representative for SHARC Energy Systems, a company that has developed a series of products focused on recovering thermal energy in liquid waste such as sewage, laundry wash water, brewery tank cleaning water, etc.  This energy is then transferred via a heat pump to create new hot water for either domestic hot water (showering and cleaning) or space heating hot water.  These systems can also take the place of a cooling tower to allow heat rejection in the summer months without consuming precious water or requiring chemical treatment.

Why would MS&G want to promote these products?

First, this is a largely untapped source of thermal energy that is HUGE!  In 2005, the US DOE estimated that 1,194,200 BILLION BTU’s are discarded annually down our drains in North America – probably much more nearly 15 years later.  Note that if you burned natural gas to make that much heat at typical market costs, this untapped energy stream could be worth nearly $6,000,000,000!  That’s a lot of zeros!

Second reason to add this to our “toolbox of energy solutions” includes our mission to “electrify everything” in a manner that is highly cost effective and environmentally positive.  This technology is complementary to our other Solar PV and Ground-Source Heat Pump offerings in meeting that goal.  This additional also complements our other divisions; Testing & Balancing, IntelliHood (smart, variable volume commercial kitchen hoods) and PositiV (our new building “health” monitoring system).

PIRANHA - SHARC Wastewater Heat Recovery System

Case Study

Recently we designed a geothermal heat pump system for a new 7 story/230 room hotel that is under construction in the USA Midwest.  We observed that the heat pump system removed much more cooling energy than required for heating on an annual basis.  One way to address this is to apply this type of technology to “pump” waste heat from the HVAC system into the Domestic Hot Water system to reduce the burning of natural gas, reduce energy cost and allow the heat pump system to operate more efficiently.  We’ve proposed to provide a SHARC PIRANHA system to address this and depending upon the size of the system (5 or 10 tons) we could provide an annual energy savings of $4,000 to $9,000 with a CO2 reduction of 22 to 45 metric tonnes. This system could provide 27-54% of their annual hot water needs.  Payback on the initial investment can be as short as 6-7 years.

We provided the conceptual design for a 235,000 square foot research facility proposed to be built in Ohio.  They wanted to consider a ground-source heat pump solution for their nominal 1,000-ton cooling load.  We looked at a full-size geothermal bore field that would cost approximately $5.3 million, then a smaller bore field with a cooling tower that would cost $3.0 million and finally, a VERY small geothermal bore field with a SHARC system tied into the city sewer for only $1.5 million!  This offering allows us to provide better energy consumption than a full-size geothermal borefield or the cooling tower options with lower first cost, no water or chemical treatment for a cooling tower and ALL HVAC components safely underground or inside to reduce risk from damage from weather events or acts of terror.

SHARC Wastewater Heat Exchange System

Applications

We continue to work with SHARC Energy to develop concepts that can enhance our mission to change how we heat & cool buildings and provide hot water.  These types of systems can be great for:

  • Lodging applications such as recovering heat from sewage or laundry, possibly large commercial kitchens with a significant dish washing load as well
  • Breweries, distilleries and wineries that use a great deal of hot water for cleaning that is then lost down the drain
  • Car washes – also can be lots of hot water down the drain
  • Apartment buildings, college residence halls and senior living facilities – target size of 50 to 400 residents is the sweet spot, but larger is great too!
  • Large swimming pools that have separate tanks for filter backwash water before it is released to a city sewer

We are even looking at two municipal (large) snow melt systems in the Midwest that use natural gas to provide the needed heat.  Converting these to municipal sewage heat pumps can significantly reduce energy consumption, cost and CO2 emissions.

Want more information on the SHARC system? Contact us here or call us at 513.965.7300!

Authored By: Steve Hamstra

Steve Hamstra is the Senior Vice President of Engineering for Melink Solar & Geo. He holds a B.S. in Mechanical Engineering from Michigan State University, and has over 40 years of experience in the geothermal industry. The majority of Steve’s career was building an Architect and Engineering firm in Holland, Michigan where he worked on his first commercial project for geothermal in 1985. During a briefly leave of absence in the design world, Steve served as CEO/CTO of Greensleeves LLC, a geothermal design and control software company. Here, he received an ASHRAE Global First Place Award for the engineering design of the geothermal HVAC system at the University of Findlay. He was also successful in getting two geothermal-related technology aspects patented. Throughout Steve’s career he has contributed to many trade publications and conferences, including those held by ASHRAE, IGSHPA, U.S. Department of Energy, among many others. He is currently Vice Chair of ASHRAE Technical Committee 6.8 Ground Source Heat Pumps, and on IGSHPA’s Research Committee. His work as gotten him named Energy Engineer of The Year in IL, IN, IO, MI, MN, OH, and WI, and AEE Fellow for lifetime achievement in the energy industry by the Association of Energy Engineers.