Healthy Buildings & Employee Performance: The Next Revolution ?

Do you want to optimize your employees performance by 299%?  Increase cognitive ability in strategy development by 288%?

Yes! Of course, we all would love to fully optimize ourselves and those around us to maximize our potential and impact on the world.  What if the answer was all around us, literally allowing us to live, and also invisible.  According to new research focused on indoor air quality in the work place, there is a tremendous opportunity to move beyond “green” buildings and ensure we work in “healthy” buildings. 

Source: Natural Leader: The Cogfx Study

The COGfx Study, while limited to 24 participants, demonstrated that improved indoor environmental quality doubled cognitive testing results in buildings with enhanced ventilation versus conventional buildings.  The study distinguished between three building types; Conventional, Green, and Enhanced Green.  Within these building types the focus benchmarks were Carbon Dioxide levels in parts per million (ppm), ventilation rates expressed in cubic feet per minute (CFM) per person, and Volatile Organic Compounds (VOC) in micrograms per cubic meter. It’s also worth noting that building used was already a LEED Platinum certified facility, thus there’s likely more room for increased scores when comparing older existing buildings.

Source: Natural Leader: The Cogfx Study

The study explores the decrease in energy efficiency, which could be viewed as a negative, however relative to the increase in employee productivity and lost time due to sickness the savings can be dwarfed.  The noted increased cost per occupant in energy consumption is $400/year, however the study suggest a 6 x return in sick leave reductions alone relative to the increased energy cost.  Factor in the potential for increased productivity for one of the biggest operational cost for any company, the people, and the energy penalty is worth the investment.

While Melink is focused on energy efficiency, we’re also not blind to the impacts of IAQ and built our corporate HQ as a LEED Gold facility, later upgraded to Platinum.  In addition to the LEED standards, we also monitor in door CO2 levels via sensors and increase ventilation rates via a HVAC purge sequence once the room exceeds 800 ppm in CO2.  On average, the general office area CO2 levels hover around 600 ppm and are aided by the addition of live plants which produced an average drop of 100 ppm in CO2.

This focus on IAQ has led us to the development of a new product, Melink PositiV, to help ensure proper positive building pressure and CO2 levels in commercial buildings. The aim is to provide a simple solution for one of the biggest problems in all buildings, restaurants and retail locations; negative building pressure.  The standalone device will monitor pressure, temperature, relative humidity, and CO2 levels and provide a picture of building health and trends.

Top 5 Negative Building Pressure Problems

The difference between outside air supplied to a building and air removed from inside a building is the building pressure.  Typically, a slightly positive (or more air being supplied than taken out) building pressure is wanted for most buildings.  Negative building pressure can cause many issues for customers from high energy costs to hot and cold spots in a building.  Here are the top five problems a building with negative pressure can experience:

  1. Difficulty Opening and Closing Doors:

One of the first signs that a building is negatively pressurized, is when the front door is not easily opened.  After finally opening the door to a negatively pressurized building, a large draft will be felt on your back as the door is slammed closed.  Because buildings are typically designed to be positively pressurized, you should feel a soft gust of air blowing outward when this is set properly.

  1. High Humidity:

If your building is negatively pressurized, the building will pull in unconditioned outside air through all openings including doors, windows, and other leaks in the structure. This is very noticeable in the summertime when outside humidity is especially high.  This can cause mold or mildew in the building.

  1. High Energy Costs:

Studies have shown that correcting negative building pressure can save a facility owner as much as 20% on their HVAC energy costs.  By ensuring your facility has a positive building pressure, you are avoiding unnecessary costs and maximizing comfort in the facility.

  1. Outside Debris:

In a facility that is negatively pressurized, owners are more likely to see outside debris being pulled into the facility through various openings. These items include, leaves, flies, dirt, as well as smells brought in from outside.  In many facilities, this could create major issues with production as the outside debris could be contaminating the products.

  1. Hot and Cold Spots:

Another symptom commonly noticed in buildings with negative building pressure is noticeable hot and cold spots that are created by the disrupted airflow.  This could cause the customers to become angry because they can’t reach a comfortable temperature in the building.  In a restaurant, this could also cause food at the counter to become cold.

3 Steps to Troubleshooting Your Facility’s HVAC With Onsite Staff

HVAC Troubleshooting

Have you identified that your facility is experiencing a potential air balance problem?  You might be experiencing hard to open doors, uncomfortable temperatures, poor smoke capture, odors, drafty areas, or any combination of the other common sick building symptoms.  The inevitable question now is, “Who can resolve this best?” Bringing in your facility’s mechanical contractor may be your first instinct but troubleshooting with your onsite managers is actually the best place to start. Work through the following questions with your facility’s day-to-day manager:  

1.  Is the equipment running?

As basic as this may come across, it is absolutely crucial to check if all HVAC equipment is operating. Check grilles to see if air is being blown out or sucked in. Check roof equipment, can you hear the fans from the RTU, MUA, or EF units spinning? Have the manager record and communicate findings.

2. Check the Thermostats

Navigate to the wall mounted thermostats and ensure they have the proper set points. Often, a thermostat is installed and connected to the system and then left alone. When this occurs the thermostat is left at factory settings which is often set at a random temperature. Your staff can follow the directions on this thermostat to program it for the desired temperatures.  As well, check the thermostats for “Fan ON.”

Thermostat

3.  Check the Circuit Breakers

Check indoor and outdoor circuit breakers. Observe tripped or “Off” breakers. DO NOT flip the breaker on. If tripped or left off, there’s likely a reason for it and you don’t want to risk frying the electrical systems. We recommend calling an electrician for this type of deficiency.

 

Armed with your findings from these simple tests, you can save some money with a Do-It-Yourself fix.  It’s possible that the journey back to a healthy building ends here.  But if the problem persists, it’s time for the level of technical know-how. Call the mechanical contractor. With your observations to these preliminary steps above, you can approach your mechanical contractor with information that will help them to better understand your situation and get you closer to achieving a healthy building.