Cincinnati, Ohio — Melink Solar & Geo, Inc., a solar PV and geothermal engineering company, has been awarded grant funding by the United States Department of Energy’s (DOE). The Office of Energy Efficiency and Renewable Energy (EERE) specifically provided the grant funding. The funding enables Melink to accelerate the research and development of its next-generation Hybrid Geothermal HVAC System. This system stores energy using thermal batteries. It can potentially reduce installation costs of geothermal heat pump systems. In effect, providing significant energy saving opportunities for the U.S. with widespread implementation. The system’s prototype currently heats and cools Melink’s new Net-Zero Energy HQ2 facility in Milford, Ohio.
Melink Solar & Geo has been awarded an innovation grant from the U.S. Department of Energy for its Hybrid Geothermal HVAC System. A system prototype is in operation at its Milford, Ohio, headquarters.
“Our company is developing a Hybrid Geothermal HVAC System to minimize the need for expensive ground loops. Instead, we are mimicking the thermal energy storage capacity of the water inside such ground loops with phase change materials (PCM),” said Steve Melink, founder and CEO. “Melink is piloting the first prototype at our Net-Zero Energy headquarters, and we are now developing next-generation prototypes for eventual commercialization. With our third U.S. Department of Energy grant, we are committed to mainstreaming this technology for the benefit of the entire HVAC industry.”
Hard Work Pays Off
The funding is part of an ongoing innovation project with the DOE. The project encourages small businesses to advance innovation at federal agencies. Melink received the recent funding as a result of its Hybrid Geothermal HVAC System. This system demonstrated technical feasibility during the first phase of research. Melink Solar & Geo’s skill team worked collaboratively with the University of Dayton, Oak Ridge National Laboratory, and industry partners. Together, we designed a more cost-effective and energy efficient HVAC system.
“Funding from the DOE is the result of a multi-year effort. A group of intelligent and highly dedicated people have proven that the system has merit. I’m excited to say that the Hybrid Geothermal HVAC System is just one part of our growing platform of Net-Zero products,” said Seth Parker, vice president and general manager of Melink Solar & Geo.
The two-year funding will be used to finalize engineering and early commercialization of the Hybrid Geothermal HVAC System. For more information about the system or Melink Solar & Geo, please visit https://melinkcorp.com/geothermal or contact [email protected].
About MelinkSolar & Geo
Melink Solar & Geo is a national provider of renewable energy and efficiency solutions for commercial buildings. We provide consulting services and turnkey management of solar and geothermal projects. These services help businesses of all sizes reduce energy consumption and produce clean and sustainable energy for their facilities. The company recently opened a Zero-Energy building on its campus, featuring new thermal storage technologies being tested. This will help further mainstream geothermal HVAC for commercial use. Melink Solar & Geo is affiliated with Melink Corporation, which provides energy efficiency solutions for commercial buildings.
Solar Power World magazine’s Top Solar Contractors annual list includes Cincinnati-based solar installer.
FOR IMMEDIATE RELEASE
Cincinnati, Ohio — Although the COVID-19 pandemic is the immediate crisis, mitigating climate change is also an urgent issue. Solar installations are one way to help reduce greenhouse gases from fossil fuel-based power generation. Solar Power World has recognized the efforts of solar contractors across the United States in its 2020 Top Solar Contractors list, where local solar installer Melink Solar achieved a rank of 69 out of 407 companies.
The Top Solar Contractors list is developed each year by Solar Power World to honor the work of solar installers big and small. Solar firms in the utility, commercial and residential markets are ranked by number of kilowatts installed in the previous year. Companies are grouped and listed by specific service (developers, electrical subcontractors, EPCs, installation subcontractors, rooftop installers), markets and states.
“The Solar Power World team is so pleased to highlight more than 400 companies on the 2020 Top Solar Contractors list, especially during this unprecedented time,” said Kelsey Misbrener, senior editor of Solar Power World. “All contractors featured on the 2020 list reported strong 2019 installation numbers and are continuing to stand tall this year.”
This year’s collection of more than 400 Top Solar Contractors is facing obstacles that the industry has never seen before. The first quarter of 2020 was the country’s biggest ever capacity gain, with 3.6 GW of new solar capacity added. However, COVID-19 impacts slowed the market in Q2.
Melink Solar installed 27,266.8 kW (27.2 MW) of solar power in 2019. Since its founding, the company has installed more than 65 MW of solar, equivalent to 215,000 solar panels. Melink Solar is a commercial solar EPC (engineering, procurement and construction) firm offering turnkey solutions with projects across the U.S. The firm designs solar systems, procures all labor and supplies, constructs the solar array, monitors performance and provides remote and field troubleshooting assistance.
Solar Power World is the leading online and print resource for news and information regarding solar installation, development and technology. Since 2011, SPW has helped U.S. solar contractors — including installers, developers and EPCs in all markets — grow their businesses and do their jobs better.
Keeping your HVAC breathing through the Covid-19 pandemic.
The United States continues the fight against COVID-19, many reopened businesses are concerned about indoor air quality. As a result, new requirements are being implemented for the public’s safety.
Recently, New York allowed for the reopening of shopping malls but with a mandate from Gov. Andrew Cuomo: Update HVAC filters with at least a MERV-11 rating to capture the potentially airborne coronavirus particles. Likewise, Colorado’s Denver Public Schools unanimously approved Denver schools to get ventilation upgrades to help stem the spread of coronavirus. So what do these guidelines mean, and could other states follow these policies?
HVAC Filters
Minimum Efficiency Reporting Value (MERV) is used to measure the effectiveness of air filters on a scale of 1 to 16. The higher the MERV rating, the greater the filtration, i.e. the smaller the particles it can catch. The Centers for Disease Control and Prevention (CDC) recommends to improve central air filtration to the MERV-13 level (or the highest compatible with the filter rack) and to seal edges of the filter to limit bypass.
However, updating an HVAC system’s air filters may not be as simple as it sounds. For instance, a common factor that will get overlooked is that most HVAC systems that were designed for lower MERV filters (likely most of them) will need to be rebalanced for the new filters. The higher the MERV rating, the better the filtration but also the higher the static pressure (or resistance) that the fan must work against, resulting in a drop in airflow. The reduced airflow could cause comfort problems and even frozen coils. To prevent these issues, the airflow will need to be measured with the new filters installed, and then the fan speed will need to be increased to achieve the designed airflow.
Yet this is still not a “one size fits all” solution for all. Many HVAC units cannot handle the higher-rated filters. Using a filter with a higher MERV rating may cause the motor to burn out. This is why it is important you have a trained technician review your unit before making any changes.
Increase outdoor air ventilation (use caution in highly polluted areas); with a lower population in the building, this increases the effective ventilation per person.
Open minimum outdoor air dampers, as high as 100%, thus eliminating recirculation. (During mild weather, thermal comfort or humidity within a facility normally wouldn’t be affected. During extreme weather, this clearly becomes more difficult to control.)
Consider portable room air cleaners with HEPA filters.
Consider Ultraviolet Germicidal Irradiation (UVGI), protecting occupants from radiation, which is particularly in high-risk spaces such as waiting rooms, prisons and shelters.
Developing Solutions
While the experts are recommending the above items, they are not mandatory across the country. States’ policies vary. Not to mention that COVID-19 research is still developing.
The result, in the near term, is likely to be a patchwork — some commercial buildings, schools, colleges, and other facilities will make investments, while others will not. One example of an organization making the investment to fight COVID-19 is KIPP DC, a publicly funded and privately operated network of seven school campuses with 1,200 employees and 7,000 students. KIPP DC has taken huge measures, working to find the ideal system optimized to filter the coronavirus.
Overwhelmed and not sure where to begin? Melink employs a 100% self-performing, NEBB-Certified national network of Test and Balance (T&B) HVAC technicians that can quickly deploy to assess mechanical systems, verify airflow rates in accordance with ASHRAE 62.1 standards, and perform any traditional T&B work.
We have multiple, long-standing relationships with some of the largest national restaurant, retail, hotel, and supermarket chains. These relationships began because those partners liked the idea of having just one third-party company to coordinate. Melink handles all their properties by objectively verifying that the HVAC systems were installed and are working as expected.
We are here to help you navigate the ever-changing recommendations and regulations of the pandemic. Let us help you keep your doors open while helping protect your employees, customers, and equipment. Contact us.
2020 has been the most unique year to date, especially when it comes to the economy. Coming off 2019, the economy was strong, companies were reinvesting and spending money. The economy looked like 2020 would be another great year — until March. Enter COVID-19; companies that could endure the pandemic had to pivot fast. Predictions for a record year were gone in a moment. For months, businesses across the country shut down.
Like other businesses, Melink tried to come out the other side of COVID-19. Many felt more timid than ever about spending cash, and understandably so. Numerous projects put on hold as capital expenditure budgets froze for 2020, 2021, and even 2022 in some cases.
Melink’s company mission is to change the world one building at a time. We achieve this by implementing energy efficiency and renewable energy solutions into commercial facilities for decision makers.Intelli-Hood is a Demand Control Kitchen Ventilation (DCKV) system that saves money by reducing monthly operating expenses in commercial kitchen facilities. Often, Intelli-Hood pays for itself in one to three years, making it an attractive energy conservation application.
The question arises: How do we change the world one building at a time with spending on an indefinite pause?
Creative Financing Solution
I worked with a university that wanted to implement Intelli-Hood in a kitchen. Without any utility rebates taken into consideration, the $62,000 project would pay for itself in less than three years. Everything was moving smoothly until COVID-19 put everything on pause. But Melink’s committed to working with customers and customizing energy solutions. As a result, discussions were continued with the university. We were able to come up with a creative financing solution that’s win/win for all parties: an Equipment Loan Program. Thus, the customer paid nothing out of pocket, while simultaneously being cashflow-positive the second we walk off the job site. Working with a lender, we got the $62,000 financed for the university over five full years at monthly installments of $1,287. This was a total investment of $77,220.
The Savings Stack Up
At Melink, our proposals come turnkey, along with a custom Energy Savings Report. The reports give an idea of how much money you will save with Intelli-Hood. In this instance, the customer was going to save more than $18,000 in energy savings the first year alone, resulting in a positive cashflow of almost $3,000. On average, utility rates go up 3% every year, meaning that with the customer locked into an installment payment of $1,287 for 60 months, the positive cashflow will continue to increase year over year. After five years, the loan will be paid off in full and the benefits really kick in, saving more than $20,000 per year. Thus, creative financing creates more opportunities for customers to save on energy costs.
Looking at a 10-year period, the customer is going to save more than $130,000 without having to pay anything upfront. While a traditional purchase would save more money ($148,000) over the same 10-year period, it would require the full upfront cost paid in full.
A graph comparing Intelli-Hood Investments against creative financing
So, if your business is in a similar position where your budget is paused but you are still interested in saving energy, reducing greenhouse gasses, and cutting operating costs – maybe this creative financing can work for you, too. We can continue to work together to change the world one building at a time, all while exploring realistic options in the current economic climate.
July 25 is National Hire a Veteran Day. At Melink Corporation, we have veterans at nearly every level of our business, and we make hiring veterans a priority year-round.
Currently, there are 12 military veterans in the Melink family. Four are in leadership roles and eight serve in roles ranging from sales to field service, via Melink’s national network of technicians. In total, veterans comprise approximately 12% of Melink Employee-Owners.
We have found that our military veterans are loyal, hardworking, and have a strong sense of integrity. They bring a different perspective on life, leadership, and hard work. Hiring and employing veterans offers Melink a chance to support those that have given so much for our country. It is a mutually beneficial relationship, and our veterans’ military values easily translate to Melink’s core values.
How We Hire Veterans
To help us get matched with veterans, we work with a couple recruiting firms. Originally, we started working with the firms to find the right type of candidate to fill the challenging role of a Melink Field Service Technician.
For this role, veterans seem to be a natural fit and are drawn to the position. The role requires travel, a self-reliant work ethic, and adherence to a specific code of conduct. Plus, a technician is often away from his or her family for an extended amount of time.
For me, hiring veterans is rewarding on several different levels. I feel that we understand the capabilities of these individuals and that we can translate their military experience into the civilian job market.
Due to several of us in the leadership team are veterans ourselves, we have a unique advantage when hiring veteran talent. We truly enjoy the chance to provide opportunities to those who have also sacrificed and taken up the call to serve our nation.
If you are considering solar for your commercial building, an important concept to understand is net metering, whether it applies in your state, and how it works with your utility company.
What is Net Metering?
Net metering is a billing incentive that offers credits to the owner when a solar PV system produces more electricity than consumed. Any excess power generated through solar feeds back into the utility grid, thus qualifying the owner for a “credit” on his or her electric bill. Think of “debits” as energy used from the grid, or any electricity that solar power cannot cover during a given period.
This animation illustrates the flow of energy production when electricity is used over the day and night. During the day, the owner generates credits when the building’s solar panels produce more power than needed (net metering). The meter spins backwards, and excess electricity gets sent to the grid. At night, the building’s electricity needs aren’t fulfilled by solar due to lack of sunlight. Its power is therefore sourced, or debited, from the grid.
How Does Net Metering Work?
Credits = Power produced by solar
Debits = Electricity consumed from the grid
The net of these two is how net metering functions, factoring in whether the owner is charged for grid usage, or owed credits for solar production.
Think of the daily variations of energy usage in the typical home. Assume that residents typically consume most of their electricity in the mornings and evenings, before and after work. If there is little or no solar production during the time when electricity is needed, energy will come from the grid. Hence, debits — or the costs one would otherwise see on the utility bill.
Solar energy systems usually hit peak production in the afternoon when sun exposure is maximized. So, what happens to all the solar generation during the day if the power is not used or needed? The excess solar power spins the meter backwards and sends energy to the grid. Hence, these credits serve to help offset your electricity bill.
Why is Net Metering Important?
Net metering ensures the owner is credited for those natural swings in daily production. Depending on your building’s energy usage and time of peak demand, net metering can help maximize the owner’s savings from solar power. Understanding net metering laws can help determine the ideal size of the PV system, after factoring in daily, weekly, monthly, or annual estimated energy usage.
If you are considering switching to solar, these net metering regulations should guide the solar company to design your system in the most cost-effective way. After evaluating your electricity usage, the solar provider should factor in net metering compensation to get the best return on your investment, depending on how much PV generation you prefer.
How Does Net Metering Compensation Work?
Forms of compensation will vary by state and utility company. Generally, the owner should be charged only for the net electricity used by the end of the month. In some instances, if more power is generated by solar than consumed over a month or year, the utility will roll over those credits to the next period. In other scenarios, the consumer will be compensated at the retail or wholesale rate at the end of a given cycle.
Consumers must elect to receive credits in a contract with their utility provider. Tariff sheets, or compensation rates, are provided by the utility and explain whether solar overproduction results in the following:
Monetary bill credits
Check payments
kWh credits to offset future consumption from the grid
It is important to fully understand your state’s policies regarding net metering compensation. EnergySage explains how net metering rules can vary: “If you do generate more electricity than you use in a year, utilities in some states will let you carry credits over into future years, while others will reduce your credits.”
Do not let credits confuse you for cash payments, unless you live in a state that allows for that type of compensation. While you can stock up on credits to cover power you may need from the grid throughout the month or year, do not assume the utility companies will be sending a check covering the full retail rate.
Does Every State Have Net Metering?
While net metering is authorized in most states, there are different approaches to how they distribute credits, assign eligible technology, and handle capacity limits. The National Conference of State Legislatures expands on state-specific laws and advises one cannot make assumptions about compensation without digging into state rules. For example, “California credits excess generation to a customer’s next bill at retail rate. After a 12-month period, customers can choose whether to roll credits over indefinitely or receive a payment for credits at the wholesale rate. If no option is selected, credits are granted to the utility with no customer compensation.” In this case, the owner can opt in for credits at the end of the year, but it will be at the wholesale rate. Month to month, however, they receive credits at the retail rate.
Net metering policies were originally intended for areas with lower solar adoption. As more and more states become reliant on clean energy, we can expect some changes to occur. Regardless of your state or utility’s current policy, it’s important to understand how different factors can affect your long-term savings when installing solar panel systems.
Does Net Metering Eliminate Utility Bills?
A common misconception is that if you can attain Net Zero Energy for your building, you will not receive a utility bill. This is false, as the owner is still tied to the utility company in some capacity. If you are producing a lot of solar power, the building consumes the amount of electricity needed, and the remaining power shoots back onto the grid. Credits are accumulated through net metering and impact whether your utility bill is $0, or a lesser amount than in the past.
Sure, you may owe less to the utility, and the bill may look different depending on how much energy solar can offset. However, in most cases, solar will supply as much electricity as possible, and the remaining power is met by the grid.
How Does Net Demand Work?
The following chart shows a live example of how net metering works when savings occur with solar PV generation. These daily variations in current demand (debits), layered against solar PV power (credits), result in the building’s net demand.
The solar energy system at this site overproduces during the first two days since there is ample sunlight and little demand. The utility is crediting the owner’s account for that overproduction, which is then used to offset the bill when the system is under-producing.
Net metering occurs in the areas that display overproduction from solar. Excess electricity causes the meter to spin backwards. In these cases, solar generates more power than the actual usage. That excess power is sent back to the grid, while “credits” accumulate on the account.
Savings occur in every green area where solar produces power. For example, although the system is not overproducing during the last day, solar is still helping to offset part of the demand costs, or “debits.”
WEEKEND: On Saturday and Sunday, the building load is very low. Solar power is generated throughout the day with plenty of sun, which causes a lot of energy to be exported to the grid (accumulating credits). Credits are being used up at night while there is still some electricity load. MONDAY: The building energy load spikes, causing debits on the account. Solar generation doesn’t show a consistent curve since it’s cloudy outside. For the most part, the building is pulling power from the grid (at a reduced rate), and energy is exported for a small amount of time in the middle of the day. TUESDAY: A nice, sunny day. In the morning, the building starts pulling power from the grid as the energy load shoots up when workers arrive. Then, the load from the grid starts to slowly reduce as some of the electricity is produced by the solar array. Then, eventually, the building exports power back to the grid (accumulating credits), before the cycle reverses again. WEDNESDAY: No net-metering occurs because of the lack of sun. However, the load from the grid is reduced and savings still occur. The net of the debits and credits appears in the middle.
Net metering can be a confusing subject. The experts at Melink Solar & Geo can help you navigate the jargon and determine the best solution for your business. Contact us today.
Condensation, moisture absorption and, subsequently, mold or organic growth are often a result of high indoor dew point combined with cool surface temperatures. For example, if a facility’s indoor dew point is above 60oF, it is possible that moisture will begin to condense on cool surfaces like ductwork, chilled water supply lines, windows, or refrigeration systems. This collection of moisture can cause damage to the building, as well as to merchandise. It can even promote organic growth over time.
In addition to the risk of moisture accumulation, ASHRAE recommends maintaining a dew point below 62 oF to meet thermal comfort for approximately 80% of occupants; a dew point of 45 oF is recommended to maintain summertime humidity comfort levels.
Monitoring Dew Point
Consider this: You are a kid in a candy store with a plethora of delicious options in front of you. You sort through the store and boil your decision down to two candy bars.
Option A: The tried and true milk chocolate bar. Nothing fancy but classically delicious.
Option B: Fluffy nougat topped with caramel and peanuts, coated in milk chocolate. An exciting snack bursting with flavor.
Did you choose Option A or Option B?
If I had to guess, you chose Option B as it gives you more variety with your purchase! Now, what if I told you that the decision you just made also can apply to thermal HVAC design and dew point monitoring principals?
Option A: A design principal of maintaining 60% relative humidity (RH).
Option B: A design principal of maintaining a 60oF dew point.
Both are similar and help maintain a healthy building, but maintaining a 60oF dew point (Option B) is inherently better and offers a more reliable risk indicator. Using 60% RH as an indicator (Option A) is unreliable as it creates needless concern when air temperature is cool. In the example below, you can see that the amount of water vapor in the air remains the same while relative humidity concentration varies depending on the temperature of the air.
Conversely, a facility manager or building owner may have a false sense of security when indoor air temperature is above normal levels because relative humidity will decrease as air temperature rises. These reasons are why dew point should be used as a threshold of concern. Dew point will not only factor in moisture content and temperature of the air but also provides a risk indicator for condensation and moisture absorption, which should be a facility manager’s primary concern.
Using Indoor Dew Point as a Risk Indicator
If you are already using indoor dew point as a risk indicator for indoor moisture activity, then continue to do so! Specifically, look to ensure that indoor dew point remains below 60 oF during cooling operations to reduce the risk of moisture absorption, condensation, and organic growth.
If you are not using indoor dew point as your risk indicator, now is the time to do so! You could be surprised to learn that measuring relative humidity alone may not be keeping your facility safe.
Ensure that ventilated air is dehumidified to a dew point below the indoor dew point when the building is in cooling mode.
Ensure that all condensation inside HVAC components is being properly drained.
Ensure that indoor surfaces are not cooled to temperatures below indoor dew point during occupied and unoccupied modes.
Keep indoor dew point low enough to ensure that condensation does not occur on cool surfaces of HVAC components, building materials, or building furnishings.
Ensure that humidifiers are sized, installed, and controlled properly to avoid the risk of overloading indoor air with humidity.
Ensure that cool HVAC and plumbing components are properly insulated to keep their surfaces about 10 oF above indoor dew point.
These simple steps — in addition to proper HVAC ventilation, indoor air monitoring, indoor air verification, and keeping an eye on seasonal changes — can help ensure that your facility is operating in a safe manner while reducing risk of mechanical damage, moisture accumulation, or organic growth.
If you would like to learn more about ways in which your indoor air environments can be improved, please reach out to us. Please complete our contact form or contact us by phone at (513) 965-7300.
Melink Corporation is passionate about supporting the HVAC industry through its clean energy solutions. To share our field knowledge in commercial kitchen ventilation, as well as test and balance, several employees serve on professional boards like the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).
What is ASHRAE?
ASHRAE is a professional association to advance the design and construction of heating, ventilation, air conditioning, and refrigeration systems. The international group has more than 50,000 members in more than 130 countries. Most members are building service engineers, architects, mechanical contractors, building owners, and equipment manufacturers. ASHRAE is known for supporting research projects, offering education programs, and publishing technical standards.
Overall, ASHRAE’s technical standards support safety, occupant health, and energy efficiency. These standards establish consensus for testing methods for use in commerce, as well as the performance criteria to guide the industry. ASHRAE publishes the following three types of voluntary consensus standards:
Method of Measurement or Test (MOT)
Standard Design
and Standard Practice.
ASHRAE does not write rating standards unless a suitable rating standard will not otherwise be available. ASHRAE is accredited by the American National Standards Institute (ANSI) and follows ANSI’s requirements for due process and standards development.
Melink & ASHRAE
Jason Brown
For many years, Melink Corporation has supported ASHRAE. Employee-owners, including CEO Steve Melink, have written journal articles, technical standards, and presented at conferences. Most recently, Jason Brown (Senior Sales & Applications Engineer) and Bryan Miller (Vice President of Technology) have volunteered their time and expertise.
Here’s a closer look at Melink’s support of ASHRAE:
Bryan Miller
ASHRAE operates through committees. Through the committee structure, members decide policy, develop procedures, and direct the organization’s activities. Brown and Miller have been active for several years on two ASHRAE committees. Brown is a voting member of the following committees, meaning he has influence on what does and doesn’t pass in the committee proceedings:
Technical Committee on Commercial Kitchen Ventilation (TC 5.10) Technical Committees (TC) are responsible for identifying research topics, proposing research projects, selecting bidders, and monitoring research projects funded by ASHRAE. Information about research programs is discussed at each TC meeting and at the TC’s Research Subcommittee meeting. For instance, the TC 5.10 Committee, in which Brown serves, is concerned with the design, construction installation, commissioning, and sustainable operation of code-compliant commercial kitchens. The committee is also involved with revisions/updates to model codes such as the International Mechanical Code (IMC) and writing/revising ASHRAE Standards. Additionally, the TC develops sessions for ASHRAE’s winter and annual conferences.
Standards Committee for Commercial Kitchen Ventilation (SSPC 154) This Standards Committee provides design criteria for the performance of commercial cooking ventilation systems in regard to kitchen hoods, exhaust systems, and replacement air systems. Serving on this committee primarily has entailed attending and participating in meetings that occur twice per year.
Brown and Miller have assisted with updating sections of the ASHRAE Handbook. The ASHRAE Handbook is a series of four volumes covering HVAC Applications, Refrigeration, Fundamentals, and HVAC Systems 7 Equipment. One volume is revised each year, ensuring that no volume is older than four years. In relation to the committees previously mentioned, TC 5.10 is responsible for Chapter 34 (Kitchen Ventilation) of the ASHRAE HVAC Applications Handbook, which was last revised in 2019. The chapter focuses primarily on kitchen ventilation systems in restaurants and institutional food service facilities. Brown and Miller provided content and graphics about demand control kitchen ventilation (DCKV) systems and variable frequency drives. In addition, for other handbooks, they have provided content on HVAC test and balance commissioning.
Excerpt from ASHRAE 2019 Handbook, Chapter 34 Commercial Kitchen Ventilation
Brown and Miller attend the Cincinnati ASHRAE Chapter meetings to represent Melink at the local level.
For further professional development, the Melink employee-owners have attended ASHRAE’s conferences. “Normally we meet biannually for a few days in conference settings, but we have a few virtual meetings in between to vote and discuss topics that are requiring attention in the industry,” said Brown.
Read more about other ways Melink employee-owners volunteer their time and expertise.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Read More
Necessary cookies help make a website usable by enabling basic functions like page navigation and access to secure areas of the website. The website cannot function properly without these cookies.
We do not use cookies of this type.
Marketing cookies are used to track visitors across websites. The intention is to display ads that are relevant and engaging for the individual user and thereby more valuable for publishers and third party advertisers.
We do not use cookies of this type.
Analytics cookies help website owners to understand how visitors interact with websites by collecting and reporting information anonymously.
We do not use cookies of this type.
Preference cookies enable a website to remember information that changes the way the website behaves or looks, like your preferred language or the region that you are in.
We do not use cookies of this type.
Unclassified cookies are cookies that we are in the process of classifying, together with the providers of individual cookies.
We do not use cookies of this type.
Cookies are small text files that can be used by websites to make a user's experience more efficient. The law states that we can store cookies on your device if they are strictly necessary for the operation of this site. For all other types of cookies we need your permission. This site uses different types of cookies. Some cookies are placed by third party services that appear on our pages.