Specifying Demand Control Kitchen Ventilation Systems: Top 10 Best Practices

For many of us in the commercial kitchen ventilation industry, we have seen major evolutions in Demand Control Kitchen Ventilation (DCKV) over the last 20+ years. Some have been good – codes once prohibiting automatic variable-speed fans now allow them and often even require them. And some have been bad – several manufacturers have gone down-market to the point their controls are saving very little energy if any at all.

Cook using DCKV with visual optics to adjust fan speeds based on his cooking activity.

The general trend has been positive though because DCKV is no longer a niche but a mainstream solution across the U.S. and increasingly around the world. Running exhaust and make-up air fans at 100% speed all day long regardless of the actual cooking load is antithetical in the sustainability and IoT age in which we now live. As buildings, cars, and everything else get smarter and more efficient, it is only logical that kitchen ventilation systems do as well.

As the original pioneer and market leader of demand control kitchen ventilation since the early 1990’s, we at Melink Corporation want to continue helping building owners save energy – safely, cost-effectively, and efficiently. Having installed over 15,000 systems worldwide, we have assessed the most common problems in the marketplace and feel uniquely qualified to provide the following Top 10 Best Practices for specifiers.

TOP 10 BEST PRACTICES

1. Unless the foodservice consultant has knowledge and experience with fans and motors, he/she should consider letting the consulting engineer specify the hoods and DCKV system. The reason is, DCKV is a control system for the exhaust and make-up air fans on the roof. Though the kitchen hoods are ducted to these fans, they are comparatively simple stainless-steel boxes that only contain the rising heat and smoke from the cooking operations. The actual work of removing this heat and smoke is performed by the fans and motors on the roof along with their controls. Foodservice consultants, of course, provide a vital service in specifying the kitchen equipment below the ceiling, and this can still include the kitchen hoods and DCKV system if they have the requisite knowledge and experience of the rest of the ‘system’ above the ceiling. Otherwise, costly errors such as those described below are apt to occur.

2. The DCKV drives must match the fan motor ratings on the roof. If the foodservice consultant cannot obtain the voltage, phase, and frequency information from the ‘M’ drawings, or provide the fan package along with the hoods to ensure a proper match, the wrong drives can be specified and sent to the jobsite. This often causes frustration, time delays and extra costs. Moreover, the DCKV drives should come from tier 1, brand-recognizable manufacturers that have enough confidence in their product to offer a 3-year warranty. These highly sophisticated electronic devices are the beating heart of every DCKV system and therefore should not be selected based on low cost only. Performance and reliability should be the top consideration.

3. The DCKV system must be compatible with the make-up air heating (and cooling, if applicable) system. If the foodservice consultant does not communicate the minimum speed setting of the drives or provide the fan package with the hoods to ensure proper matching, the wrong type of make-up air system can be specified and sent to the jobsite. Not all make-up air systems are capable of heating and/or cooling at low-to-medium speeds and therefore the assumed energy savings by the foodservice consultant will not be achieved for his/her customer. This often causes frustration to everyone involved, and most importantly buyer angst and future bad-will because the purpose in he/she agreeing to buy the DCKV system was to maximize energy savings.

4. The specifier should weigh the risks vs benefits of adding modulating dampers inside the grease ducts for the following reasons: a) Dampers are obstructions inside grease ducts and such ducts are better designed to be completely open for the easy removal of heat and grease/smoke; b) These obstructions add resistance to airflow which force the fan motors to work harder and expend more energy, not less; c) Modulating dampers add another level of moving parts to the system which require regularly scheduled maintenance; d) These dampers are mounted inside the duct and above the ceiling where they are either likely to be damaged by hood cleaners or never seen again and maintained; e) When–not if–these dampers fail, the consequences can be serious if the heat and grease/smoke accumulate to the point of causing a fire; f) These dampers are often used in high-rise applications where only one duct can be run up to the roof and connected to one fan – making the consequences of a fire all the greater because there is more property and human life at stake; g) If more than one damper closes, the fan can cause such a severe negative pressure inside the grease duct that it collapses and renders the entire system unusable and in need of replacement (yes, we have seen this before). Most all engineers agree these risks are not worth the potential benefits.

Please see the photo below of a damper causing almost 100% blockage inside a grease duct. Also see the photo of a hood collar and fire suppression system coated in grease which can act like a ‘glue’ to the dampers above.

5. The engineer should design a dedicated exhaust fan for each kitchen hood whenever possible to improve reliability and energy savings. This allows each hood/fan system to operate independently according to the actual cooking load. It also eliminates the risks of a multi-hood system connected to a single fan which include the following: a) There is no redundancy in the event the single fan goes down due to a fan, motor, drive, or belt failure; b) There is no justification to use modulating dampers inside the grease ducts to achieve energy savings (see above).

6. The engineer or consultant should specify direct-drive fans whenever possible to further improve reliability and energy savings. In the old days, fan and motor pulleys and belts were used to adjust the fan speed to achieve the proper airflows during the original air balance. But today, the DCKV drives can be programmed for a minimum and maximum speed and thereby eliminate the need for these pulleys and belts. This improves reliability because belts are the infamous weak-link in most every HVAC system; and it improves energy savings because belts just create additional efficiency losses in the system.

7. The specifier should consider DCKV systems with both temperature and optic sensors for maximum energy savings on Type I hoods. This is because there are two main by-products of most cooking processes: heat and smoke/steam. If the DCKV system only senses heat, it will not quickly respond to a fast-rising plume of smoke/steam into the canopy. As a result, the hood will ‘spill’ this smoke/steam into the kitchen space and cause comfort, health, and other concerns. The typical way to counter this problem is to program the demand control kitchen ventilation system at a high minimum speed of 80-90% with a low-temperature duct-stat so that the fans operate at 100% even with the slightest amount of heat. However, this eliminates most of the fan energy and conditioned air savings that your customers want during idle-cooking conditions.

We recommend both temperature and optic sensors–to detect both heat and smoke/steam. This allows the DCKV system to be programmed at a much lower minimum speed of 30-50% with a wider temperature span so that average fan speeds can be 60-80% and quickly go to 100% only when there is cooking smoke/steam present inside the hood. Though the optic sensor adds a slight cost premium, the additional operating savings will typically more than offset this cost within 1-2 years. If designed smartly, you will only need one optic sensor per hood, not one optic sensor per appliance. And if designed smartly, you will not have to worry about the optic sensor getting fouled with grease over time because it will be out of the air stream and protected by other capabilities (ie. air-purging, auto-calibrating) to ensure maximum energy savings each and every day.

Of course, if the cooking operations are mainly ovens and do not produce smoke/steam, then the optic sensors can be deleted from the specification to reduce first cost. But optic sensors would provide future flexibility in the event new and different appliances are installed. Moreover, optic sensors are fast-acting whereas temperature sensors are slow-acting, and this complementary combination makes for a safe and reliable control strategy. The lessons being learned from Boeing’s failure to use the right number and type of sensors as well as time-tested algorithms in its new 737Max airplanes are in some ways relevant to our industry. A first-cost obsession can be dangerous.

8. The specifier should be willing and able to logically argue against efforts to reduce the first cost of the DCKV system in the name of value-engineering. As indicated, we live in a world that often thinks in terms of first cost only rather than total life-cycle cost. And this means that sometimes the optic sensors, if not the entire DCKV system, get value-engineered out of the specification. This is another reason why the consulting engineer is often better suited to specify the demand kitchen control ventilation system. He/she is typically better able to make an informed argument to the architect and building owner that a well-engineered DCKV system is fundamental to the safety, health, comfort, and energy efficiency of a kitchen and these should not be compromised.

Having said this, we have also worked with highly-qualified foodservice consultants who have taken the time to learn the savings, costs, risks, and benefits of the various technologies and are just as capable of making this argument.

If a first-cost mindset continues to prevail, then the engineer or consultant should rely on the DCKV manufacturer to provide a comprehensive ‘energy savings report’ to show the expected financial payback and ROI based on the pertinent operating assumptions. The architect and building owner need to understand what they would give up in energy savings if they just install a code-minimum, auto on/off system. Fortunately, the world is increasingly trying to lower its carbon footprint – and this means maximizing energy savings, not just meeting code minimums for safety purposes.

9. Specify the DCKV system to be commissioned by the manufacturer or its trained/authorized representative for every installation prior to turnover to operations. It is our experience that too many systems have not been tested to ensure the owners will ever realize the energy savings they have been led to expect. Without this service, countless systems are operating at 100% speed all day long. We have found this problem at many locations where we are called to investigate as an independent commissioning firm. Invariably, the facilities managers state the systems have run this way for years. Verification and commissioning are essential.

10. Specify the DCKV system to have remote monitoring capabilities to ensure proper operation and energy savings for the life of the system. Like a car or any mechanical/electrical system, proper operation and performance are essential to ensuring a happy customer for life. And, therefore, remote monitoring is a highly beneficial and even necessary feature. Unfortunately, very few demand control kitchen ventilation systems are equipped with this capability and so the specifier and the customer need to know which ones are and are not. In this day and age every facility manager should be able to ‘see’ how his/her systems are performing online.

If you follow these Top 10 Best Practices, you will not only save significantly more energy for your customers and the world at large, you will likely improve your reputation as an expert and be more successful in growing your business. At the least, be mindful that DCKV systems ‘touch on’ multiple professions and trades and therefore we encourage you to help promote good communication between the foodservice consultant and consulting engineer.

Demand control kitchen ventilation as a technology has grown leaps and bounds over the last 20+ years. We hope you and your customers fully benefit from all these advancements well into the future.

Contact us here or call us if you have any questions at 513-965-7300.

Intelli-Hood 3 Faults

Is an Intelli-Hood 3 (IH3) system installed in your commercial kitchen? In this post, we will cover common IH3 system faults.

Clearing IH3 Optic Faults

Optics need to be cleaned periodically. Melink recommends cleaning your Intelli-Hood 3 optic sensors a few times each month. If there is a large amount of buildup on the lens or a simple obstruction in the hood, the touchpad will show an optic fault. 

  • The touchpad will show which hood has the optic fault.
  • Verify there are no obstructions in the hoods.
  • Verify that the optics are aligned. You can do this by navigating to “Status” under the Menu, then “Hood Controllers.” Select the appropriate hood controller using the “Next” button, and you’ll be able to check the voltage displayed as actual signal versus calibrated signal (ex. 1.32v/1.67v).
  • If the touchpad displays “Calibrating” or a low signal (0.02v/1.84v), the hardware is working properly but may have an obstruction causing the signal to be too low.
  • Many optic faults can be prevented through routine hood cleaning and system maintenance.
  • Verify that the cables are also connected tight on the hood controller. If your fault says “Emitter Missing” or “Receiver Missing,” it is indicating a possible bad connection or failed component. Check the connector at each optic sensor for a loose plug or, less commonly, corrosion on the terminals.

Clearing IH3 Temperature Faults

Temperature sensors installed in the hood monitor the temperature of the exhaust air.  The Intelli-Hood 3 system can be programmed to turn on and off automatically by hood temperature. 

Signs of a temperature fault include fans running at 100% and the touchpad stating that a “Temp Fault” is occurring. Therefore, it is important to understand that a temperature fault could turn your system on or off at inappropriate times. In most cases, the fault will simply cause the fan to run 100%, which will allow cooking to continue but prevents you from saving energy.

If you experience an Intelli-Hood 3 temp fault…

  • Make sure that the sensors are clean. It is not always necessary to clean the temperature sensor unless there is a large amounts of grease or build up.
  • Check the connections that go from the temperature probe to the controllers. Also, verify that the number of temp sensors match the number of temp sensors programmed. Under the Menu, select “Status (1)” followed by “Hood Controllers (3).” Then select “Enter.” If a temperature sensor is not connected properly or isn’t working, then it will show as “Missing.”
  • Check for any damaged components.
  • On the hood controller, there are different ports that can be used to connect the cables for temperature sensors. Swapping those may help to get rid of the fault.

If your Intelli-Hood 3 system is still experiencing issues, we encourage you to check our other reference documents.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Intelli-Hood 2 Fault Codes: “My system fault is not in the manual.”

In this post, we will dive into specific fault codes for the Melink Intelli-Hood 2 (IH2) system…

Over the years, Melink Corp has designed and implemented three Intelli-Hood® systems: IH1, IH2 and IH3. Each system has its own specific configurations. While all work on the same basic principles, they DO NOT have the same parts or interfaces. Not sure what system is in your kitchen? Click here.

Intelli-Hood 2 Faults

The IH2 reference guide does not list every possible fault. Instead, it includes a code guide, which can be confusing to interpret, especially if the system has multiple hoods.

Please note that everyday kitchen staff should not be expected to understand these faults; the intention is for a contractor or electrician to be handling fault issues.

Intelli-Hood 2 Fault Code Guide

This code guide should be used for diagnosing IH2 fault codes.

F = Fault

1, 2, 3 or 4 = Identifies the hood number, i.e. H-2 means Hood 2

h-1-e = 100%

H or h = Temperature fault

H = Sensor fault code relating to high temperature or open circuit/high resistance

h= Sensor fault code relating to low temperature or low resistance

U = VFD fault
Note: U faults will normally be followed by another code. If you don’t have a second code, the system is not recognizing the VFD, i.e. no power is going to it.

O = Optic fault
o on bottom of display = Low optic signal
o on top of display = High optic signal or saturation

F-PH = Phone line
Note: Either the phone line connected to it is no longer there or the modem itself is bad.

More Information

Read the following for more information about fault codes:
Temperature and Optic Sensor Faults
VFD Faults

For full code troubleshooting details, consult your IH2 troubleshooting guide.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Understanding Your Intelli-Hood VFD

Melink’s Intelli-Hood® controls modulate the speed of the exhaust and fan motors with variable frequency drives (VFDs). Understanding and knowing how to troubleshoot your Intelli-Hood VFD will make maintenance easier.

The VFDs receive commands from a central controller, which receives its input from the optic and temperature sensors. This post will cover Intelli-Hood’s VFD locations, connections, faults, and troubleshooting.

If you are looking for information on Intelli-Hood optic and temperature sensor troubleshooting, click here.

VFD Locations

The Intelli-Hood’s VFDs are located in a variety of spots, and this will vary from site to site. Some common locations are:

  • End cabinets connected to the hood
Intelli-Hood VFD located in end cabinet mounted to hood
  • Remotely mounted cabinets located in or near the hood
Intelli-Hood VFD located in or near the hood
  • Maintenance or electrical room where service breakers can be found
Intelli-Hood VFD located in mechanical room
  • Above the hoods where the lines for the exhaust fan motors have already been run
  • On the roof (Some facilities require NEMA 3R enclosures, which are waterproof and meant for mounting outside the building. Commonly these units are placed near each fan/motor.)

Verifying VFD Connections

Intelli-Hood VFD connections will also vary depending on the facility and types of drives used. There are generally two options: direct control by the Intelli-Hood system via the Cat5e modbus connection or analog control via the Intelli-Hood system.

The modbus control uses our VFD port on the controller and provides 2-way communication with the drive. This allows the actual drive status/data to be displayed on the Intelli-Hood touchpad. If your IH3 touchpad is displaying “VFD Lost Comms,” it usually means the drive has lost power or the connection has been broken, either physically or by some programming change. Verify the Cat5e cable is securely connected at the drive and system controller and if further investigation is needed, contact our technical support for assistance.

If you have an analog-controlled drive, this normally means the drive was either existing or supplied by others and could not be directly controlled by the Intelli-Hood system. In this case, we are telling the drive when to turn on and how fast to go with analog wire connections but do not receive any feedback data showing drive status or faults. In most cases, when a problem occurs with a fan, you have noticed because the kitchen is noticeably quieter or getting hot and smokey. To check the connections, you will need a multi-meter to check DC voltage and continuity. You will likely want to have your facilities team or electrician look into the issue.

Understanding VFD Faults

The VFD is in place to modulate and protect the motor against incoming power from the service breaker to the VFD and from the VFD to the serving motor.

If a fault is detected, cycle power at the service breaker for approximately 1 minute. The display on the VFD should go blank at this time. After 1 minute, turn the breaker back on and cycle the power to the Intelli-Hood system. If the fault persists, contact Melink Technical Support.

VFD Troubleshooting

The following are examples of advanced troubleshooting you may be able to perform on site. However, if you are uncomfortable working with electrical equipment, contact Melink or your local licensed electrician.

Over Voltage Faults: Check for water in the disconnect. Adjusting the deceleration scale on the VFD may help this issue from motor regeneration on the BUS voltage.

Overload Faults: Check the motor nameplate FLA, VFD Programmed FLA, and the actual AMP draw. If over-amping occurs, reduce the maximum frequency from what is currently programmed. This would suggest that the motor is working harder either due to age, belts that are too tight, or a combination of both.

Under Voltage Faults: Check for voltage on all three phases to make sure that all three legs are steady and at the appropriate voltage. This fault may be caused due to a temporary voltage drop from dirty power or loose connections.

Earth Faults: Check for ground connections. Also check the motor for insulation leaks and proper grounding.

Special Notes for Intelli-Hood VFD Faults

VFD issues are the most common Intelli-Hood troubleshooting issues. For advanced troubleshooting, contact Melink Technical Support. Depending on the circumstances, issues may be resolved through phone support, remote diagnostics, remote control, or a technician may be dispatched to test and replace components based on field conditions.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Intelli-Hood Wiring

This post covers how to check your Intelli-Hood wiring connections and how to replace a cable. There are several connections that compose the Intelli-hood system, making this a broad subject.

As you review the following video and pictures, please note that cable colors vary by Intelli-Hood system. Learn more about IH1, IH2, and IH3 differences here.

How to Check Intelli-Hood Wiring Connections

First, it is important to verify that all the cables are shielded and tight with no corrosion. Also, check that the output and input are not switched.

Intelli-Hood wiring connection points
Make sure the cable connections are not loose.

Next, begin to check the connections. The connections go as follows:

  • Optic cables are connected from the sensor to the Air Purge Unit (APU)
  • The APU and temperature sensors are connected to the hood controller and in the correct ports
  • The hood controller can be connected to another hood controller if more than one hood is connected to the system. Also, the hood controller is connected directly to the system controller.
  • There are also connections that go from the drives to the internal operating processor. If there is a communication issue, it could be from bad connections from the drive or the receptacle. If there is more than one drive, plug the drives one to another in a daisy chain, keeping only one drive plugged to the system controller.

Check also that the motor connections are tight and cables shielded. A loose cable will cause a short especially at the disconnect switch. Water or moisture can also cause the system to trip.

How to Replace Intelli-Hood Wiring

In some situations, replacing a cable can be downright easy. However, applications change from site to site and what should be easy may turn out to be time-consuming. For this reason, it is important that when replacing a cable, you are familiar with the system and how it’s set up. If you are uncomfortable with replacing a cable, you should contact Melink or your local certified electrician.

  • When replacing any cable in the system, it is important to determine how it is run. Some sites will have cables inside conduit for every run, and some will have conduit only around the hood area. For systems with multiple hoods or hood controllers, there is a cable that will run between the controllers. For these situations, you may need to have your own termination tools, fish tape, and possibly a second set of hands. Some recommend using the original cable you are removing to pull the new cable. Others recommend using fish tape to avoid kinking or breaking the new cable; they adhere or tape it to the old cable, pull it through the conduit, and then use the fish tape to pull the new cable. When replacing a cable, you should be cautious not to make hard bends or kinks with the cable and not snag the RJ-45 connectors on the ends. Breaks in the shielding can allow unwanted noise from external RF signals and nearby equipment to cause faults in the system.
  • For the Intelli-Hood 3 system, the cables connecting the individual sensors and control boards are made of 24AWG 4-pair, Plenum-rated, and shielded Category 5E cable. These cables are available premade/terminated in several common lengths, as well as in bulk for uncommon runs from our Intelli-hood Technical Support.
  • Common cables that need checked when you have faults are the optic emitter and receiver cables, the temperature probe cables, VFD cables, and the hood controller cables.
  • The optic cables and temp probe cables run to a hood controller and are typically between 5 to 15 ft., depending on the hood size and hood controller location. One hood controller can accept up to four temp probes but only one optic emitter/receiver. From the hood controller to the system control cabinet, there is a “home run” cable. This cable connects the system controller to the hood controllers and all sensors in this chain. There can be multiple home run cables for systems with many hoods, and you will need to verify that you have the correct chain.
Creating a daisy chain between
Daisy chain between variable frequency drives (VFDs)
  • The variable frequency drives (VFD) are also connected to the system controller with cables at the VFD network ports. The VFD network ports can have several VFDs on each chain but one home run for each. Normally VFDs are mounted in a bank of sorts and will daisy together in series using the same cable in a shorter length.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Intelli-Hood Cleaning

To maintain your kitchen’s system, regular Intelli-Hood cleaning is important. If general cleaning is not performed, the Intelli-Hood® system’s optic sensors can trigger a fault and will operate the fans at 100%, thus eliminating any opportunity for energy savings. Below we will cover tips to clean the temperature sensors, optic sensors, hood exterior, and touchpad.

Most system damage is related to improper cleaning. Before any cleaning procedure, it is important to consult your system’s reference guide. The general optic and temperature sensor guidelines below apply to all systems (IH1, IH2, IH3).

Cleaning the Optic Sensors

The most common Intelli-Hood cleaning issue is owners not taking proper precautions to protect the optic sensors. Each set of optics has an emitter and a receiver; these pieces have a resilience coating to protect them from general moisture. For Intelli-Hood to function properly, site staff needs to keep the optics clear of obstructions and clean the optic sensors periodically with non-abrasive, non-corrosive cleaning products. We recommend only using a mild cleaning detergent, such as Dawn dishsoap.

Cleaning Intelli-Hood optic sensors and emitters
Intelli-Hood Optic Sensor Box

How often should I clean? The time between cleanings is largely dependent on the volume of grease being exhausted. Optic sensors in kitchens with lots of grease-cooking may need to be cleaned several times a month. On the other hand, some kitchens may have sensors that can go several months between cleanings.  If sensors get too much build-up on the lenses, an optic fault will occur. The fans will run at full speed until the sensors are cleaned and reset.

How should I clean the optic sensors? Press the push-button latches on the sides of the optic box to remove the cover. Then wipe the lens of the optic circuit board with a soft, damp cloth. Replace the cover of the optic box ensuring that the green cable connecting the cover to the optic bracket is not in front of the lens.

Cleaning the Intelli-Hood optic sensors
Remove the optic box cover to clean the internal components.

Is hood cleaning safe? When performing a general cleaning of the kitchen hood, hood cleaners must be careful to keep the Intelli-Hood components dry. The optic sensors are water-resistant but not waterproof. The optic box should be sealed with thick tape and plastic wrap before using high pressure water, steam, or other cleaning chemicals in the hood. Hood cleaners should not soak any parts of the system. Harsh cleaning chemicals can lead to scratching of the optic lens. Care should be taken around the fire suppression device (ANSUL pipes) when cleaning; sometimes when cleaning, these can shift the placement of the optic sensors.

Cleaning the Temperature Sensors

Temperature sensors are encased by a round cylinder to help prevent contaminant buildup on the sensor itself. They rarely need to be cleaned.

Intelli-Hood cleaning temperature sensors
An Intelli-Hood temperature sensor

However, if extremely large amounts of grease or other contamination build up on the sensor, the probes should be brushed or wiped clean with a soft cloth. Do not wipe down the temperature sensors with force; it is not necessary for them to be absolutely spotless.

Pressure cleaning is not recommended. If water soaks the temperature sensors, the water will work its way back through the threads, reaching the center of the Intelli-Hood processor.

Cleaning Intelli-Hood’s Electrical Components

Touchpad: The touchpad may be wiped clean, but it should not be soaked with excessive water. If the face is damaged, special care must be taken to prevent water from getting through the label to the electronic components behind the face. 

Cleaning Intelli-Hood touchpad with soft cloth
Clean Intelli-Hood’s touchpad with a soft cloth.

If holes start to wear in the touchpad’s keypad, contact Melink for replacement parts. You may need to replace the labels or the entire touchpad, depending on the damage. If you do not fix the holes, the internal parts may get wet, eventually leading to system failure and kitchen downtime.

If a touchpad is replaced, caulk should be used to seal the backside. This sealant will help protect the touchpad from kitchen cleaners that are sprayed in its vicinity.

Hood Light Fixtures: The hood light fixtures must be kept dry, too. If water gets inside a light fixture, it could create a short on the circuit and damage the Intelli-Hood processor, which powers the lights.

End Cabinet: If an end cabinet is present, take care to avoid getting components on the inside wet. Generally, these cabinets are completely open from the top. 

Cleaning the Hood-Top Equipment

On top of the hood, you may find a number of Intelli-Hood components including the air purge unit, hood controllers, temperature probes, and control cables.  These components must remain dry.

If a hood cleaner or anyone else needs to be on top of the hood for any reason, they must be careful to avoid stepping on these components in order to keep them dry.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Determining if DCKV is Right for You?

When a customer is first debating if Demand Control Kitchen Ventilation (DCKV) is right for their facility, there are multiple questions that come to mind. What is a good application for DCKV? What does it cost versus the lifetime payback? Does it actually slow fans down that much? What is the ability for service in the future?

All of these are valid questions. The most important thing is to partner with a company that works with your team to evaluate and determine what solution is best at the onset of reviewing the opportunity. In order to answer the above questions, the DCKV provider should be asking you the following at minimum:

  • What is the size of the hood(s) (Length X Width)?
  • What is the schedule of the exhaust fans, do they only run 8hrs/day, 12hrs, 24hrs?
  • What kind of equipment is underneath the hoods?
  • What are current utility rates for your area of the country?
  • Is there dedicated supply air to the kitchen space?

With this information the DCKV Manufacturer should be able to provide some advice.

What is a good application?

Four primary factors play a role in this answer. They include: utility rates, total fan horsepower (Exhaust + Supply), exhaust fan run hours and your geographic location.

The total horsepower is self-explanatory. The greater the HP the larger available savings. However, lower horsepower may not disqualify an application. If there is a total of 5hp between exhaust and supply, operating longer than 12hrs/day, with moderate utility rates of at least $0.08/kWh, DCKV systems can be a feasible savings opportunity.

Fan operating hours additionally play a role based on the savings, the longer the operations the greater savings. This type of savings can be compounded depending on the geographic location as significant conditioned air savings can be recognized. 

What does it a system cost versus the lifetime payback?

The cost of a system will vary based on the complexity as well as the selected technology. Two options are a temp only based system or one that incorporates additional optic sensors. Although a temp only based system may cost less, it is important to evaluate savings over the lifetime of equipment compared to a system that incorporates optics.

Assume a 12-year life cycle of equipment. For the sake of this discussion, we will evaluate the following scenario:

  • Single Hood (20ft long)                  –   24hr Fan Operation
  • 5hp Exhaust (5000cfm)                  –   $0.10kWh
  • 3hp Supply                                          –   $1.02therm
Cost Avg. Run Speed Annual Savings Simple Payback Lifetime Savings (12yrs)
Temp – Only $7,000 80.5% $3,502 2.0 yrs $42,024
Optics Based System $16,000 58% $7,865 2.0 yrs $94,380

As seen above the lifetime savings of an optic based system is greater than twice the amount of a temp-only based system. It is important for a DCKV partner to offer a solution best for the customer’s needs, perhaps a blended system would provide the largest amount of savings. For example, perhaps on a larger kitchen, there is significant savings opportunities for one or two of the hoods. However, another single hood has only a single pizza oven underneath, this is when it is important to partner with a manufacturer who has technologies that will maximize savings, such as auto-temp spans and scalability of their system.

Does it actually slow fans down that much?

In the savings example above there is a significant disparity between the average runs speeds of a Temp Only based system and that of a system including optics. When reviewing and selecting a DCKV system, it is important to have proven data of performance. Look for manufacturers that have case studies for their technologies, and significant volumes of measurement and verification. Every market sector is different regarding a 24hr average run speed. As a buyer do not hesitate to ask for examples of performance for your market being evaluated. You can also utilize third party publications such as Demand Ventilation in Commercial Kitchens An Emerging Technology Case Study, written by Fisher Nickel, Inc found here.

What is the ability for service this in the future?

One final important aspect to consider is what happens post installation. Commitment from a manufacturer to service over the lifetime of a system is very important. Does your DCKV partner go beyond the standard warranty? Certain manufacturers offer 24hr engineering technical service. Do they have a service network of technicians available to visit your site if needed? Another consideration is where would replacement parts be purchased from. Some manufacturers have components manufactured outside the United States which can delay delivery and in return create a headache for you to provide consistent service to your customers.

Another important focus on the future would be, what is the adaptability of the system? Everyone has seen a kitchen space eventually be remodeled and cooking equipment is swapped out for a new concept. Perhaps there is increased heat from this equipment change, so can the originally selected system adapt to this change? Certain manufacturers have temperature probes that area initially calibrated at startup based on initial equipment. On the other hand, Melink Corporation’s Intelli-Hood, offers an Auto-Temp span, that self-calibrates, and spans based on trends of continuous data points and monitoring therefore, an equipment change resulting in an increase or decrease in heat load will be recognized and self-adjusted for maximum savings.

How to decide what works for you.

In closing, there are many important variables to consider when selecting a product including DCKV. To some, upfront cost is a primary concern, and to many other end users the most important may be what happens over the life of the system. “Will the manufacturer provide me support?” and more importantly “How much will this save me over time?” Many of us are always saving for our retirement, perhaps now is the time to invest in the savings that are available within your kitchen. Personally, I would love to save double that over a lifetime of a system for a product with the same initial payback.

Higher Education Dining Trends Impact On Energy Usage

The dining experience at Colleges and Universities across the country has changed drastically over the last decade. Although it has been about ten years since I left, it feels like just yesterday I was on campus at the University of Cincinnati and Northern Kentucky University. During my tenure, the options were limited; you might find a handful of cafeterias across campus and a few popular fast food places like Wendy’s, Subway and Pizza Hut at the student union. Visiting campus now I can’t believe the changes; there are hundreds of options. The student unions have started to look more and more like casino food courts that include local options and big names. Students are seriously taking food offerings into account when considering a school, especially if they’re going to live on campus. Colleges are majorly using it to their advantage to recruit students and provide a better campus life. In 2008, NKU even constructed a new Student Union Building to compete with other local area colleges.

Over the last 7 years or so, I’ve toured dozens of higher education kitchens and the cooking operations are huge. West Point, for example, serves around 5,000 meals in a very short amount of time on any given day. All the Big 10 schools have between 7 and 10 dining halls on campus that are running for 3+ meals a day and serving a variety of options from soups and chili to baby-back ribs. With the large operations come large costs! Not just in the obvious costs including wages, salaries, and benefits, but in big time energy usage. Running the exhaust fans and the corresponding MUA units 16+ hours per day is a ton of wasted electricity. Additionally, the number of commercial exhaust hoods required to prepare the diverse food preparation means there is a ton of exhausted air and reconditioning of air required.

As schools continue to compete for higher enrollment rates and evolve with demand, they have to respond to the increased energy usage and operating expenses to ensure they can remain competitive with pricing. Many colleges and universities have tight operating budgets for their facilities, so it’s especially important to find low or no-cost ways to reduce energy expenditures. To combat these new challenges, Campus Energy Managers have started considering Demand-Controlled Kitchen Ventilation (DCKV) systems to help save the electric energy being wasted on all the new fan motors and reconditioned air. These systems conserve energy, save money and make for a quieter and more comfortable cooking experience.  Energy Managers have also started engaging students and faculty in energy conservation to save on campus energy bills. At many higher education institutions, students are the biggest advocates for energy efficiency and will respond enthusiastically to educational initiatives and conservation pledge campaigns.

 

Could Intelli-Hood be a fit for my project?

Is energy usage a pain point in your campus kitchen? Are you curious how much energy Intelli-Hood could save you?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

Lodging’s Consumer Dining Trends and Your HVAC System

Since 2010, the hotel landscape has changed drastically due to the emergence of Millennials in the marketplace. The days of long-term consistency, home-away-from-home value, and a friendly face at check-in are things of the past, and we are now seeing the need for hotel hot spots that are personalized, efficient, connected and trendy. The transformation makes hotels get creative in filling revenue discrepancies created by the quickly changing landscape, focusing more than ever on operational costs.

The change in buying power

Prior to 2010, the “Baby-Boomers” generation dominated occupancy demands. When Boomers were the bulk of the lodging customer base, focus was on consistency, more value for the customer’s dollar, a big screen TV, consistent food and beverage offerings, and a friendly, personalized check-in experience. Today, Millennials are all about Individualism, efficiency, mobile connectivity, creative and trendy food and beverage offerings, and online check-in. Due to this demand shift, along with the cost to build and the ever-changing consumer marketplace, developers are becoming more focused on the development of limited brand hotels. As of June 2017, “Upscale” and “Upper Mid-Scale” represent roughly 65% of all new build hotels.

In response to the change in customer wants and needs, hotels have majorly changed their strategy. Hilton developed the Tru® brand in response to these changes to make it easier and less expensive for developers to build. Marriott is doing an over-haul of their Courtyard® brand to create a hybrid solution to please guests from both generations. Previously, if you’d go to a major brand hotel on the east coast or the west coast, you could get the same exact cheeseburger. Those days are over! Hotels must now bring in local food and beverage options to not only keep customers eating at the hotels, but to provide a truly exceptional experience every time. A satisfied customer is no longer enough in any market today. With social media and other technologies, there’s now a need to “wow” customers. A good dining experience isn’t enough, it needs to be one of the best dining experiences they’ve ever had!

What does this mean for revenue?
In a recent article published by Lodging Magazine, Food and Beverage (F&B) profit margins are up roughly 5% since 2010, yet food purchases only rose by a CAGR of 2.3%. The two sources that continue to decline for F&B are “In-Room Dining” and “Mini-Bar” sales, which is consistent with the new emphasis of providing a unique social experience in hotel lobbies. Considering the decline in food purchases and the ever-changing marketplace, it is hard to imagine lodging has seen a 5% increase in F&B profit margins.

So how do all these items tie together and make for increased profit margins? How have the hotel management companies been able to make all these changes in a short amount of time and still increase profits? How can profit margins be up when we all know an ever-changing menu would make it harder to negotiate prices at a high-volume? It’s not one simple answer but I’ve personally seen the major management companies stepping up their game and working smarter. Revenue increases can’t be the main driver for the success. The operational efficiencies are where the differences are made!

Changing energy consumption is key

Electrical consumption for the typical US hotel is 50% in HVAC and 23% in lighting. Within food service facilities, HVAC systems account for 29% of energy consumption. Up to 75% of this load can be attributed to the commercial kitchen ventilation system. At Melink, we’ve seen many owners in the last 2 to 3 years begin installing a Demand Control Kitchen Ventilation (DCKV) system in their kitchens to help lower operational costs and solve the ever-plaguing negative air pressure issues. With the help of these owners and major brands, we’ve also developed technologies to help solve this in the ever-growing Select Service markets. Many of these projects have been packaged with LED lighting to solve 73% of the problem (per the chart below). This allows the hotel owner to take advantage of the available utility incentives, increase profit margins in the changing F&B market, show an attractive ROI to the owner, help solve air pressure issues in common spaces, and increase overall guest comfort.

If there’s one thing that’s true in this industry, it’s that change is inevitable! Management companies, owners, brands, developers, and vendors have two options: change with the market or get left behind. I’m happy to report that most of the major players are making smart and energy-conscious decisions that are ultimately improving their bottom line and increasing guest loyalty and satisfaction.

Intelli-Hood South Korea Hospital Retrofit Case Study

CONTEXT

Faced with the industry challenge to reduce operating costs, Daegu Catholic Hospital in Daegu, South Korea sought after promising opportunities to reduce energy usage.

  • Total motor power: 170 HP
  • Daily operating hours: 17
  • Days per week: 7
  • Weeks per year: 52
  • Cost per kilowatt hour: $0.088

RESULTS

 

Energy savings graphic

Below are the before (navy) and after (green) reductions in kilowatt hours, heat load and exhaust volume:

Graph

 

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.