Becoming an Intelli-Hood Sales Engineer (During a Pandemic)

Sales Engineer. These are two words that most of us have a clear understanding of their respective meanings. But what about when they are put together? Well, I ‘m not sure what to expect either, but it sounded like a challenge, and I like those. I’m new to the Demand Control Kitchen Ventilation (DCKV) industry but well-versed in technology and mechanics due to my background. So, when I took the role of a Melink Intelli-Hood Sales Engineer, I felt well prepared.

Then, enter COVID-19.

Onboarding plan? Derailed. Customer visits? Cancelled. Installations with field service techs? Not attending. How was I supposed to embrace my role and be a valuable addition to the team?

 

 

What Next?

That’s where my Melink family stepped in. To continue with business “as normal,” we, like other companies, took advantage of virtual meetings, trainings, lunch-and-learns, and other digital tools. These tools were not thought about or utilized even just 10 years ago! As the pandemic unfolded, our work progressed, thanks to these digital tools. I immediately saw the value in my new role and Melink’s value to their customers.

For instance, indoor air quality became a topic of daily conversation. Essential facilities, like grocery stores and hospitals, were now on the front lines. I helped get Intelli-Hood® kitchen ventilation controls into these areas and ensured first responders had healthy air.

You see, Intelli-Hood learns to optimize your kitchen ventilation by using temperature probes paired with infrared optical sensors. The optics pick up on airborne contaminants in the form of smoke and then trigger the variable frequency drives. The exhaust fan’s variable frequency drive (VFD) adjust to the appropriate speed to ensure adequate evacuation of the effluent. Smoke being present does not have to mean that heat is, which is one more way that a Melink Intelli-Hood control system ensures continuous capture of all effluent. As if that was not beneficial enough, the system is also ensuring that more of the pre-conditioned air is staying in the occupied spaces instead of being wastefully exhausted from the kitchen due to continuous discharge ventilation.

 

 

Looking to the Future: Customized Solutions

Pre-COVID-19 and now, I spend each day as a Sales Engineer building customized quotes for our customers’ unique needs. As requests for new construction sites roll in, I work with my Business Development Manager to go through the plans for each site, reviewing the kitchen designs and ventilation requirements, as well as requirements that have been called out by general contractors and food service consultants. Every job requires different exhaust hood types; fan types and horsepower; and temperature monitoring preferences, as well as the possibility of tying the system into a building’s BACnet. All of these items and more are taken into consideration when preparing an accurate, customized quote for our customers.

Thus, these last few months of working in Virtual Corporate America have helped me realize just how adaptable our team at Melink — and our Intelli-Hood controls — really are. COVID-19 or not, these control systems are improving the health and wellness of employees and customers in thousands of locations worldwide, all while being the most energy efficient DCKV system on the market. And the umbrella of Melink solutions extends to other areas, too. When you pair an Intelli-Hood control system with solar panels, a PositiV® unit to monitor building health, and a high-quality Test and Balance plan, you really cannot ask for a more efficient and energy-saving space.

I may only be finishing my first quarter here at Melink as a Sales Engineer, but already I have felt the satisfaction of knowing that what I am doing is making a difference.  We really are making the world a better, greener place, one building at a time.

Intelli-Hood system

Understanding Your Intelli-Hood VFD

Melink’s Intelli-Hood® controls modulate the speed of the exhaust and fan motors with variable frequency drives (VFDs). Understanding and knowing how to troubleshoot your Intelli-Hood VFD will make maintenance easier.

The VFDs receive commands from a central controller, which receives its input from the optic and temperature sensors. This post will cover Intelli-Hood’s VFD locations, connections, faults, and troubleshooting.

If you are looking for information on Intelli-Hood optic and temperature sensor troubleshooting, click here.

 

 

https://youtu.be/ViDAFUTQPLQ

 

 

VFD Locations

The Intelli-Hood’s VFDs are located in a variety of spots, and this will vary from site to site. Some common locations are:

 

  • End cabinets connected to the hood

 

Intelli-Hood VFD located in end cabinet mounted to hood

 

  • Remotely mounted cabinets located in or near the hood

 

Intelli-Hood VFD located in or near the hood

 

  • Maintenance or electrical room where service breakers can be found

 

Intelli-Hood VFD located in mechanical room

 

  • Above the hoods where the lines for the exhaust fan motors have already been run

 

 

  • On the roof (Some facilities require NEMA 3R enclosures, which are waterproof and meant for mounting outside the building. Commonly these units are placed near each fan/motor.)

 

 

 

Verifying VFD Connections

Intelli-Hood VFD connections will also vary depending on the facility and types of drives used. There are generally two options: direct control by the Intelli-Hood system via the Cat5e modbus connection or analog control via the Intelli-Hood system.

The modbus control uses our VFD port on the controller and provides 2-way communication with the drive. This allows the actual drive status/data to be displayed on the Intelli-Hood touchpad. If your IH3 touchpad is displaying “VFD Lost Comms,” it usually means the drive has lost power or the connection has been broken, either physically or by some programming change. Verify the Cat5e cable is securely connected at the drive and system controller and if further investigation is needed, contact our technical support for assistance.

If you have an analog-controlled drive, this normally means the drive was either existing or supplied by others and could not be directly controlled by the Intelli-Hood system. In this case, we are telling the drive when to turn on and how fast to go with analog wire connections but do not receive any feedback data showing drive status or faults. In most cases, when a problem occurs with a fan, you have noticed because the kitchen is noticeably quieter or getting hot and smokey. To check the connections, you will need a multi-meter to check DC voltage and continuity. You will likely want to have your facilities team or electrician look into the issue.

 

 

Understanding VFD Faults

The VFD is in place to modulate and protect the motor against incoming
power from the service breaker to the VFD and from the VFD to the serving motor.

 

If a fault is detected, cycle power at the service breaker for approximately 1 minute. The display on the VFD should go blank at this time. After 1 minute, turn the breaker back on and cycle the power to the Intelli-Hood system. If the fault persists, contact Melink Technical Support.

 

 

VFD Troubleshooting

The following are examples of advanced troubleshooting you may be able to perform on site. However, if you are uncomfortable working with electrical equipment, contact Melink or your local licensed electrician.

Over Voltage Faults: Check for water in the disconnect.
Adjusting the deceleration scale on the VFD may help this issue from motor
regeneration on the BUS voltage.

Overload Faults: Check the motor nameplate FLA, VFD Programmed FLA, and the actual AMP draw. If over-amping occurs, reduce the maximum frequency from what is currently programmed. This would suggest that the motor is working harder either due to age, belts that are too tight, or a combination of both.

Under Voltage Faults: Check for voltage on all three phases
to make sure that all three legs are steady and at the appropriate voltage.
This fault may be caused due to a temporary voltage drop from dirty power or
loose connections.

Earth Faults: Check for ground connections. Also check the
motor for insulation leaks and proper grounding.

 

 

Special Notes for Intelli-Hood VFD Faults

VFD issues are the most common Intelli-Hood troubleshooting issues. For advanced troubleshooting, contact Melink Technical Support. Depending on the circumstances, issues may be resolved through phone support, remote diagnostics, remote control, or a technician may be dispatched to test and replace components based on field conditions.

 

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

“We’ve Done Benchmarking. We’ve Done Lighting. What’s Next?!” Kitchen Ventilation.

The Benefits of DCKV

Kitchen ventilation, both exhaust and make up air, represent a significant opportunity for kWh and kBTU reductions in your facility. Demand Control Kitchen Ventilation, (DCKV) uses temperature and optic sensors to vary exhaust speed and make up air fans.  This is in response to precise cooking intensity underneath all kitchen hoods. With fans only running as needed, savings are gained on fan energy (controls produce 40-60% average fan speed versus 100% without controls). In addition, there are heating and cooling savings gained as a result of kitchens not evacuating all air that was just conditioned.

These controls can be installed in new construction projects. They’re usually specified by engineering firms in the design phase of your project, and should qualify for one LEED point. In addition, DCKV is a path to compliance for commercial buildings’ energy codes for states that have adopted ASHRAE 90.1 2010 and greater. You can see what your state’s requirements are here.

Retrofitting

Retrofitting the temperature and optic controls within existing kitchen exhaust hoods is equally effective at generating energy savings. It’s important to confirm that the controls are UL 710 and 2017 listed. This permits them to be installed in any manufacturer’s hood in any cooking application. There are many utility rebate incentive programs available for the installation of DCKV as well.

Kitchen Ventilation in Action

The financial impact for hospitals’ operating costs is significant when kitchen exhaust and makeup air fans no longer run at full speed 24/7.  A study by the EPA demonstrated that each dollar saved by a non-profit hospital, is the same as generating $20 in new revenues. Incidentally that same dollar saved in a for-profit facility is like increasing EPS by one penny.

Melink recently completed a Mid-West hospital project that produced $20,000 (per year) in combined savings. The savings included electrical, heating and cooling costs. Using EPA study metrics, this equivalates to $400,000 in new revenue for this facility.  Taking rebate incentives for our technology, the hospital’s ROI was less than one year.

The Purpose of DCKV

The goal of any DCKV project is to install controls that maximize the energy savings within the kitchen. In addition, DCKV will assist compliance with building energy codes, attain LEED points and make kitchens quieter and more comfortable. This article goes into greater detail and dives deeper into how these controls pay back initial investment. The articles recently appeared in the American Society for Healthcare Engineering publication, Inside ASHE.

Find the Inside ASHE article on kitchen ventilation here.