Specifying Demand Control Kitchen Ventilation Systems: Top 10 Best Practices

For many of us in the commercial kitchen ventilation industry, we have seen major evolutions in Demand Control Kitchen Ventilation (DCKV) over the last 20+ years. Some have been good – codes once prohibiting automatic variable-speed fans now allow them and often even require them. And some have been bad – several manufacturers have gone down-market to the point their controls are saving very little energy if any at all.

Cook using DCKV with visual optics to adjust fan speeds based on his cooking activity.

The general trend has been positive though because DCKV is no longer a niche but a mainstream solution across the U.S. and increasingly around the world. Running exhaust and make-up air fans at 100% speed all day long regardless of the actual cooking load is antithetical in the sustainability and IoT age in which we now live. As buildings, cars, and everything else get smarter and more efficient, it is only logical that kitchen ventilation systems do as well.

As the original pioneer and market leader of demand control kitchen ventilation since the early 1990’s, we at Melink Corporation want to continue helping building owners save energy – safely, cost-effectively, and efficiently. Having installed over 15,000 systems worldwide, we have assessed the most common problems in the marketplace and feel uniquely qualified to provide the following Top 10 Best Practices for specifiers.

TOP 10 BEST PRACTICES

1. Unless the foodservice consultant has knowledge and experience with fans and motors, he/she should consider letting the consulting engineer specify the hoods and DCKV system. The reason is, DCKV is a control system for the exhaust and make-up air fans on the roof. Though the kitchen hoods are ducted to these fans, they are comparatively simple stainless-steel boxes that only contain the rising heat and smoke from the cooking operations. The actual work of removing this heat and smoke is performed by the fans and motors on the roof along with their controls. Foodservice consultants, of course, provide a vital service in specifying the kitchen equipment below the ceiling, and this can still include the kitchen hoods and DCKV system if they have the requisite knowledge and experience of the rest of the ‘system’ above the ceiling. Otherwise, costly errors such as those described below are apt to occur.

2. The DCKV drives must match the fan motor ratings on the roof. If the foodservice consultant cannot obtain the voltage, phase, and frequency information from the ‘M’ drawings, or provide the fan package along with the hoods to ensure a proper match, the wrong drives can be specified and sent to the jobsite. This often causes frustration, time delays and extra costs. Moreover, the DCKV drives should come from tier 1, brand-recognizable manufacturers that have enough confidence in their product to offer a 3-year warranty. These highly sophisticated electronic devices are the beating heart of every DCKV system and therefore should not be selected based on low cost only. Performance and reliability should be the top consideration.

3. The DCKV system must be compatible with the make-up air heating (and cooling, if applicable) system. If the foodservice consultant does not communicate the minimum speed setting of the drives or provide the fan package with the hoods to ensure proper matching, the wrong type of make-up air system can be specified and sent to the jobsite. Not all make-up air systems are capable of heating and/or cooling at low-to-medium speeds and therefore the assumed energy savings by the foodservice consultant will not be achieved for his/her customer. This often causes frustration to everyone involved, and most importantly buyer angst and future bad-will because the purpose in he/she agreeing to buy the DCKV system was to maximize energy savings.

4. The specifier should weigh the risks vs benefits of adding modulating dampers inside the grease ducts for the following reasons: a) Dampers are obstructions inside grease ducts and such ducts are better designed to be completely open for the easy removal of heat and grease/smoke; b) These obstructions add resistance to airflow which force the fan motors to work harder and expend more energy, not less; c) Modulating dampers add another level of moving parts to the system which require regularly scheduled maintenance; d) These dampers are mounted inside the duct and above the ceiling where they are either likely to be damaged by hood cleaners or never seen again and maintained; e) When–not if–these dampers fail, the consequences can be serious if the heat and grease/smoke accumulate to the point of causing a fire; f) These dampers are often used in high-rise applications where only one duct can be run up to the roof and connected to one fan – making the consequences of a fire all the greater because there is more property and human life at stake; g) If more than one damper closes, the fan can cause such a severe negative pressure inside the grease duct that it collapses and renders the entire system unusable and in need of replacement (yes, we have seen this before). Most all engineers agree these risks are not worth the potential benefits.

Please see the photo below of a damper causing almost 100% blockage inside a grease duct. Also see the photo of a hood collar and fire suppression system coated in grease which can act like a ‘glue’ to the dampers above.

5. The engineer should design a dedicated exhaust fan for each kitchen hood whenever possible to improve reliability and energy savings. This allows each hood/fan system to operate independently according to the actual cooking load. It also eliminates the risks of a multi-hood system connected to a single fan which include the following: a) There is no redundancy in the event the single fan goes down due to a fan, motor, drive, or belt failure; b) There is no justification to use modulating dampers inside the grease ducts to achieve energy savings (see above).

6. The engineer or consultant should specify direct-drive fans whenever possible to further improve reliability and energy savings. In the old days, fan and motor pulleys and belts were used to adjust the fan speed to achieve the proper airflows during the original air balance. But today, the DCKV drives can be programmed for a minimum and maximum speed and thereby eliminate the need for these pulleys and belts. This improves reliability because belts are the infamous weak-link in most every HVAC system; and it improves energy savings because belts just create additional efficiency losses in the system.

7. The specifier should consider DCKV systems with both temperature and optic sensors for maximum energy savings on Type I hoods. This is because there are two main by-products of most cooking processes: heat and smoke/steam. If the DCKV system only senses heat, it will not quickly respond to a fast-rising plume of smoke/steam into the canopy. As a result, the hood will ‘spill’ this smoke/steam into the kitchen space and cause comfort, health, and other concerns. The typical way to counter this problem is to program the demand control kitchen ventilation system at a high minimum speed of 80-90% with a low-temperature duct-stat so that the fans operate at 100% even with the slightest amount of heat. However, this eliminates most of the fan energy and conditioned air savings that your customers want during idle-cooking conditions.

We recommend both temperature and optic sensors–to detect both heat and smoke/steam. This allows the DCKV system to be programmed at a much lower minimum speed of 30-50% with a wider temperature span so that average fan speeds can be 60-80% and quickly go to 100% only when there is cooking smoke/steam present inside the hood. Though the optic sensor adds a slight cost premium, the additional operating savings will typically more than offset this cost within 1-2 years. If designed smartly, you will only need one optic sensor per hood, not one optic sensor per appliance. And if designed smartly, you will not have to worry about the optic sensor getting fouled with grease over time because it will be out of the air stream and protected by other capabilities (ie. air-purging, auto-calibrating) to ensure maximum energy savings each and every day.

Of course, if the cooking operations are mainly ovens and do not produce smoke/steam, then the optic sensors can be deleted from the specification to reduce first cost. But optic sensors would provide future flexibility in the event new and different appliances are installed. Moreover, optic sensors are fast-acting whereas temperature sensors are slow-acting, and this complementary combination makes for a safe and reliable control strategy. The lessons being learned from Boeing’s failure to use the right number and type of sensors as well as time-tested algorithms in its new 737Max airplanes are in some ways relevant to our industry. A first-cost obsession can be dangerous.

8. The specifier should be willing and able to logically argue against efforts to reduce the first cost of the DCKV system in the name of value-engineering. As indicated, we live in a world that often thinks in terms of first cost only rather than total life-cycle cost. And this means that sometimes the optic sensors, if not the entire DCKV system, get value-engineered out of the specification. This is another reason why the consulting engineer is often better suited to specify the demand kitchen control ventilation system. He/she is typically better able to make an informed argument to the architect and building owner that a well-engineered DCKV system is fundamental to the safety, health, comfort, and energy efficiency of a kitchen and these should not be compromised.

Having said this, we have also worked with highly-qualified foodservice consultants who have taken the time to learn the savings, costs, risks, and benefits of the various technologies and are just as capable of making this argument.

If a first-cost mindset continues to prevail, then the engineer or consultant should rely on the DCKV manufacturer to provide a comprehensive ‘energy savings report’ to show the expected financial payback and ROI based on the pertinent operating assumptions. The architect and building owner need to understand what they would give up in energy savings if they just install a code-minimum, auto on/off system. Fortunately, the world is increasingly trying to lower its carbon footprint – and this means maximizing energy savings, not just meeting code minimums for safety purposes.

9. Specify the DCKV system to be commissioned by the manufacturer or its trained/authorized representative for every installation prior to turnover to operations. It is our experience that too many systems have not been tested to ensure the owners will ever realize the energy savings they have been led to expect. Without this service, countless systems are operating at 100% speed all day long. We have found this problem at many locations where we are called to investigate as an independent commissioning firm. Invariably, the facilities managers state the systems have run this way for years. Verification and commissioning are essential.

10. Specify the DCKV system to have remote monitoring capabilities to ensure proper operation and energy savings for the life of the system. Like a car or any mechanical/electrical system, proper operation and performance are essential to ensuring a happy customer for life. And, therefore, remote monitoring is a highly beneficial and even necessary feature. Unfortunately, very few demand control kitchen ventilation systems are equipped with this capability and so the specifier and the customer need to know which ones are and are not. In this day and age every facility manager should be able to ‘see’ how his/her systems are performing online.

If you follow these Top 10 Best Practices, you will not only save significantly more energy for your customers and the world at large, you will likely improve your reputation as an expert and be more successful in growing your business. At the least, be mindful that DCKV systems ‘touch on’ multiple professions and trades and therefore we encourage you to help promote good communication between the foodservice consultant and consulting engineer.

Demand control kitchen ventilation as a technology has grown leaps and bounds over the last 20+ years. We hope you and your customers fully benefit from all these advancements well into the future.

Contact us here or call us if you have any questions at 513-965-7300.

Determining if DCKV is Right for You?

When a customer is first debating if Demand Control Kitchen Ventilation (DCKV) is right for their facility, there are multiple questions that come to mind. What is a good application for DCKV? What does it cost versus the lifetime payback? Does it actually slow fans down that much? What is the ability for service in the future?

All of these are valid questions. The most important thing is to partner with a company that works with your team to evaluate and determine what solution is best at the onset of reviewing the opportunity. In order to answer the above questions, the DCKV provider should be asking you the following at minimum:

  • What is the size of the hood(s) (Length X Width)?
  • What is the schedule of the exhaust fans, do they only run 8hrs/day, 12hrs, 24hrs?
  • What kind of equipment is underneath the hoods?
  • What are current utility rates for your area of the country?
  • Is there dedicated supply air to the kitchen space?

With this information the DCKV Manufacturer should be able to provide some advice.

What is a good application?

Four primary factors play a role in this answer. They include: utility rates, total fan horsepower (Exhaust + Supply), exhaust fan run hours and your geographic location.

The total horsepower is self-explanatory. The greater the HP the larger available savings. However, lower horsepower may not disqualify an application. If there is a total of 5hp between exhaust and supply, operating longer than 12hrs/day, with moderate utility rates of at least $0.08/kWh, DCKV systems can be a feasible savings opportunity.

Fan operating hours additionally play a role based on the savings, the longer the operations the greater savings. This type of savings can be compounded depending on the geographic location as significant conditioned air savings can be recognized. 

What does it a system cost versus the lifetime payback?

The cost of a system will vary based on the complexity as well as the selected technology. Two options are a temp only based system or one that incorporates additional optic sensors. Although a temp only based system may cost less, it is important to evaluate savings over the lifetime of equipment compared to a system that incorporates optics.

Assume a 12-year life cycle of equipment. For the sake of this discussion, we will evaluate the following scenario:

  • Single Hood (20ft long)                  –   24hr Fan Operation
  • 5hp Exhaust (5000cfm)                  –   $0.10kWh
  • 3hp Supply                                          –   $1.02therm
Cost Avg. Run Speed Annual Savings Simple Payback Lifetime Savings (12yrs)
Temp – Only $7,000 80.5% $3,502 2.0 yrs $42,024
Optics Based System $16,000 58% $7,865 2.0 yrs $94,380

As seen above the lifetime savings of an optic based system is greater than twice the amount of a temp-only based system. It is important for a DCKV partner to offer a solution best for the customer’s needs, perhaps a blended system would provide the largest amount of savings. For example, perhaps on a larger kitchen, there is significant savings opportunities for one or two of the hoods. However, another single hood has only a single pizza oven underneath, this is when it is important to partner with a manufacturer who has technologies that will maximize savings, such as auto-temp spans and scalability of their system.

Does it actually slow fans down that much?

In the savings example above there is a significant disparity between the average runs speeds of a Temp Only based system and that of a system including optics. When reviewing and selecting a DCKV system, it is important to have proven data of performance. Look for manufacturers that have case studies for their technologies, and significant volumes of measurement and verification. Every market sector is different regarding a 24hr average run speed. As a buyer do not hesitate to ask for examples of performance for your market being evaluated. You can also utilize third party publications such as Demand Ventilation in Commercial Kitchens An Emerging Technology Case Study, written by Fisher Nickel, Inc found here.

What is the ability for service this in the future?

One final important aspect to consider is what happens post installation. Commitment from a manufacturer to service over the lifetime of a system is very important. Does your DCKV partner go beyond the standard warranty? Certain manufacturers offer 24hr engineering technical service. Do they have a service network of technicians available to visit your site if needed? Another consideration is where would replacement parts be purchased from. Some manufacturers have components manufactured outside the United States which can delay delivery and in return create a headache for you to provide consistent service to your customers.

Another important focus on the future would be, what is the adaptability of the system? Everyone has seen a kitchen space eventually be remodeled and cooking equipment is swapped out for a new concept. Perhaps there is increased heat from this equipment change, so can the originally selected system adapt to this change? Certain manufacturers have temperature probes that area initially calibrated at startup based on initial equipment. On the other hand, Melink Corporation’s Intelli-Hood, offers an Auto-Temp span, that self-calibrates, and spans based on trends of continuous data points and monitoring therefore, an equipment change resulting in an increase or decrease in heat load will be recognized and self-adjusted for maximum savings.

How to decide what works for you.

In closing, there are many important variables to consider when selecting a product including DCKV. To some, upfront cost is a primary concern, and to many other end users the most important may be what happens over the life of the system. “Will the manufacturer provide me support?” and more importantly “How much will this save me over time?” Many of us are always saving for our retirement, perhaps now is the time to invest in the savings that are available within your kitchen. Personally, I would love to save double that over a lifetime of a system for a product with the same initial payback.

Intelli-Hood Hiram College Retrofit

Context

Like the majority of colleges and universities without kitchen demand control ventilation (DCV) in their dining halls, Hiram College was using inefficient hood fans to cool down their kitchens and to keep employees safe. Running at 100% capacity without any actual cooking occurring, the hood exhaust fans were wasting energy and pushing the meter higher and higher. As a consequence, Hiram experienced expensive utility bills. Below is the operation information for the kitchens:

  • Total motor power: 12. HP
  • Daily operating hours: 17
  • Days per week: 7
  • Weeks per year: 52
  • Cost per kilowatt hour: $.09
  • Climate zone: 5

 

Results

Hiram pursued Brewer-Garrett (BG), a performance contractor for energy efficiency, to consult them in energy efficiency upgrades. BG evaluated their kitchens and cafeterias to identify four areas with high energy consumption. BG recommended four Energy Conservation Measures (ECMs) for these spaces, all of which fell into their 15 year ROI program. Having seen successful ROI performance with Intelli-Hood kitchen hood controls in previous projects, BG included the technology as 1 of 4 ECMs for Hiram.

 

 

Hiram College Savings Results with Intelli-Hood

 

The following is a typical one day variable fan speed graph using Intelli-Hood:

Typical fan speed graph using Intelli-Hood kitchen hood controls

 

 

Here are a before (navy) and after (green) reductions in kilowatt hours, heat load and exhaust volume:

hiram college demand control kitchen venilation before and after reductions

 

The Brewer-Garrett team commented on their impression of Intelli-Hood and working with Melink:

“You guys have the optimal product for smoke sensing. The cooking sensing technology identifies heat and/or smoke more accurately than other manufacturers. Melink also provides a very thorough turnkey solution, which was very helpful.”

– Eric Betz, Brewer-Garrett, electrical engineering manager

“We appreciate the fast turnaround and positive purchase experience. Also, the Melink installers were courteous and knowledgeable. All Melink personnel were readily accessible and eager to help when called. As far as the system itself, it is well thought-out and high quality. The display is easy to read and use.  Also, I like the ability for Melink to remotely monitor and fine tune with their Remote Access service.”

– Jon Erdmann, Brewer-Garrett, senior project manager

 

COULD INTELLI-HOOD BE A FIT FOR MY PROJECT?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

EMAIL THIS CASE STUDY OR SHARE IT TO YOUR SOCIAL MEDIA BY CLICKING THE ICONS BELOW.

Intelli-Hood Barcelona Hotel Retrofit Case Study

CONTEXT

Intelli-Hood was installed in the NH Constanza by Savergy Solutions in Barcelona, Spain in December of 2015.

  • Total motor power: 3.75 HP
  • Daily operating hours: 12.5
  • Days per week: 7
  • Weeks per year: 52
  • Cost per kilowatt hour: 0.11 EURO

RESULTS

 

Energy savings graphic

Below is a sample graph of the varying exhaust fan speed for one day at the hotel:

Green graphic

And here are before (navy) and after (green) reduction results of kilowatt hours, heat load, and exhaust volume.

Bar graph

 

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

Intelli-Hood University New Construction Case Study

CONTEXT

In an effort to reach Miami University’s goal of a 20 percent reduction in both energy and CO² emissions, the new Armstrong Student Center Construction Team was working hard to achieve a LEED Silver rating. With a target opening date of February 2014, technologies were sought to optimize energy usage for each of the five dining stations within the center. Intelli-Hood® was selected because of it’s savings projections and successful performance in other Miami University dining halls. Below is the compiled kitchen operation data across the five dining stations in which Intelli-Hood was installed:

  • Total motor power: 56.5 HP
  • Daily operating hours: 17
  • Days per week: 7
  • Weeks per year: 52
  • Cost per kilowatt hour: $0.05
  • Climate zone: 5

RESULTS

The Miami University Facilities team avoided using 254,794 kilowatts and spending $65 thousand dollars in utility costs as a result of installing Intelli-Hood. They also and reduced their carbon footprint by 341,424 pounds. After presenting a year’s worth of data for all building systems, the Armstrong Center was rated as LEED Silver by the United States Green Building Council in October 2016.

Below are two sample graphs of the varying exhaust fan speed for one day at two separate dining stations:

Intelli-hood graphic

Intelli-hood graphic v2

 

Here are a before (navy) and after (green) reductions in kilowatt hours, heat load and exhaust volume across all five dining stations:

Bar graph

 

The team at Miami University commented on their impression of Intelli-Hood and Melink:

“Working with Melink and their Intelli-Hood system has been nothing but
a good experience. They know what they are talking about and walked us
through the entire process.”

– Eric Yung, Miami University, Executive Chef

“We’re experiencing energy savings with no interruption to
kitchen operations. All our staff needs to do is turn on the
lights and occasionally clean.”

– John Pittman, Miami University, Food Service Operations

 

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

Intelli-Hood South Korea Hospital Retrofit Case Study

CONTEXT

Faced with the industry challenge to reduce operating costs, Daegu Catholic Hospital in Daegu, South Korea sought after promising opportunities to reduce energy usage.

  • Total motor power: 170 HP
  • Daily operating hours: 17
  • Days per week: 7
  • Weeks per year: 52
  • Cost per kilowatt hour: $0.088

RESULTS

 

Energy savings graphic

Below are the before (navy) and after (green) reductions in kilowatt hours, heat load and exhaust volume:

Graph

 

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

Intelli-Hood Stadium Retrofit Case Study

CONTEXT

Faced with the industry challenge to reduce operating costs, Gillette
Stadium sought after promising opportunities to reduce energy usage.
Other stadiums in the country had selected Demand Control Kitchen
Ventilation (DCKV) for their kitchen hoods based on promising estimated
savings and available utility incentives. The Gillette Stadium team also
decided to take advantage of the opportunity.

  • Total motor power: 41 HP
  • Daily operating hours: 14
  • Days per week: 7
  • Weeks per year: 50
  • Cost per kilowatt hour: $0.10
  • Climate zone: Marine

RESULTS

Gillette Stadium selected Intelli-Hood® to be installed into the hoods in
the Club and Players kitchens. The team capitalized on utility rebate
incentives that expedited the payback projection by 1.5 years. After
operating for some time, the two kitchens were tested and proved to
have reduced exhaust fan speed dramatically. In the Players kitchen the
fan speed was reduced by 66 percent and in the Club kitchen the speed was
reduced by 55 percent. Combined, the average fan speed across both kitchens was 60 percent.

Energy savings graphic

Below is a sample graph of the varying exhaust fan speed for one day at the Club Kitchen:

Gillete savings graphic

 

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

Melink Launches Financing for Intelli-Hood® Kitchen Ventilation Controls

FOR IMMEDIATE RELEASE

CINCINNATI – Dec 30, 2016 – Melink Corporation is offering an innovative new program, Melink Finance, to help provide financial options for customers seeking to implement energy-saving projects without large up-front capital commitments. The goal of the program is to allow customers to purchase Melink’s Intelli-Hood® kitchen ventilation controls and use energy savings to pay for the equipment cost on a monthly basis. 

The Melink Finance program can be tailored to meet customers’ cash flow needs based on their particular individual situations. For instance, there are deferred payment options and seasonal payment structures to match the customer’s revenue stream if the company’s existing budget is depleted. The program seeks to shift the cost of energy saving projects from large capital expenditure allocations to the operating expense side of the ledger. This shift will allow customers to have more flexibility in project timing and capture available utility incentives before they expire. 

“Our mission is to save as much energy as possible for our customers, and this program allows us to remove financial barriers in support of our customers energy savings goals,” said Randy Miles, vice president and general manager of Intelli-Hood. “This allows them to take advantage of operational cost savings on day one and provide an immediate ROI. Essentially, we can create a net positive cash flow transaction on the first day by having the energy savings exceed the monthly payment for the controls. This will allow our customers to achieve their profitability and sustainability goals while preserving capital expense.”

For more information on Melink Finance, please contact
Luci Feie at 513-965-7300 or [email protected]

About Melink Intelli-Hood

Melink Corporation is the pioneer in demand control kitchen ventilation controls, having  launched Intelli-Hood in 1990. Melink’s patented Intelli­-Hood HVAC controls package visually monitors the level of cooking activity and automatically instructs the exhaust fan to operate only as fast as necessary. Intelli­-Hood is installed into new or existing commercial hood systems and transforms a
basic stainless steel box into an intelligent energy­-saving machine.
Melink has installed Intelli-Hood controls on more than 30,000 kitchen hoods around the world. Additional information and resources may be found at www.intellihood.comIntelli-Hood is one of four business offerings from Melink, a global provider of energy efficiency and renewable energy solutions for the commercial building industry. The others are HVAC Testing & Balancing, Solar PV Development and Geothermal HVAC. For 30 years, the Cincinnati-based company has been helping organizations save energy, increase profits and make the world a more sustainable place. Melink’s corporate headquarters is LEED Platinum andNet-Zero Energy, and its vehicle fleet consists of all hybrid and electric
cars. To learn more about Melink Corporation, visit 
Melinkcorp.com or call 513.592.3391.

Intelli-Hood Restaurant Retrofit Case Study

CONTEXT

A popular national restaurant chain, which also is a leader in sustainability, adopted Melink’s patented Intelli­-Hood® HVAC controls package as an energy conservation measure. The company’s goal was to achieve a 60 percent reduction in exhaust fan energy across its 80 properties. Following is an excerpt from its 2016 Corporate Sustainability Report:

“We tested an innovative demand ventilation system at our restaurant in Pleasanton, CA, which automatically adjusts the exhaust and make up air fan speed by measuring the temperature, steam and smoke in the hood. By having the fan speed ramp up or down as needed, the amount of energy used compared to standard fans is significantly reduced by as high as 60 percent. We are now in the process of rolling out the system to approximately 120 locations, potentially reducing our energy use by as much as 63,000 kWh’s per location.”

RESULTS

Savings across the restaurant company’s portfolio have been impressive and exceeded expectations. Not only has the company enjoyed increased operating profit as a result of the 65 percent reduction in energy usage, but its utility bill has dropped by $702,240 annually since 2015.

Energy savings graphic

 

Below is a sample graph of the varying exhaust fan speed for one day at one location:

demand controlled ventilation

Could Intelli-Hood be a fit for my project?

Are you curious how much energy Intelli-Hood could save within your commercial or industrial kitchens?  Submit an energy savings estimate request form at the bottom of our Intelli-Hood page to get started.

 

Email this case study or share it to your social media by clicking the icons below.

EPA Recognizes Melink Intelli-Hood® with 2015 ENERGY STAR® Emerging Technology Award

FOR IMMEDIATE RELEASE

EPA Recognizes Melink Intelli-Hood® with 2015 ENERGY STAR® Emerging Technology Award

Cincinnati, OH- January 30, 2015- The U.S. Environmental Protection Agency (EPA) has recognized Melink Corporation’s Intelli-Hood® Demand Control Kitchen Ventilation (DCKV) System with the 2015 ENERGY STAR Emerging Technology Award for its ability to significantly reduce greenhouse gas emissions. Intelli-Hood®’s accomplishments will be publically recognized at The North American Association of Food Equipment Manufacturers (NAFEM) Show in Anaheim, CA on February 19-21, 2015.

This accomplishment marks another milestone for Intelli-Hood® since pioneering DCKV technology in 1989. After overcoming regulatory obstacles and winning the 2012 AHR Product of the Year, this award further propels the market acceptance of DCKV and its aim to further green the commercial kitchen. With over 10,000 systems installed worldwide and an estimated 650 million kWh/year saved, Intelli-Hood® contributes to energy conservation goals of the top commercial food service operations.

EPA ENERGY STAR Program Manager, Una Song, responded, “We extend  congratulations and applause to Melink Intelli-Hood® for the Emerging Technology Award accomplishment.  The Intelli Hood® System is a benchmark for DCKV technology that offers energy savings with financial value.”

Craig Davis, Vice President of Intelli-Hood®, commented on receiving the award, “Melink Corporation is fully committed to sustainability, and we are focused on the development of energy efficient products and services that support this commitment.  Not only are we honored to be recognized by the EPA for our Intelli-Hood® technology, we also applaud the EPA’s effort to bringing DCKV technology, such as Intelli-Hood®, to the forefront of energy efficiency”.

Steve Melink, President of the Melink Corporation, states the following as a response, “We are very grateful for this award.  As the pioneer of automatic variable-speed controls for commercial kitchen hoods over 25 years ago, this further validates our vision and passion for innovation.”

Technology Overview

Commercial kitchen ventilation removes the heat and effluent generated by the cooking process from the kitchen space, ensuring the comfort and safety of the cooking staff.  Commercial kitchen ventilation is typically composed of an exhaust hood suspended above the cooking appliances ducted to fans necessary to expel the heat and effluent outside.  To replace the air lost through this process, make-up air (MUA) must be provided by the building’s HVAC system or a dedicated MUA fan to the kitchen, which is composed of its own fan, ducts and potentially heating or cooling depending on the climate.

DCKV provides control over the ventilation system by modulating the speed depending on cooking activity.  Traditionally, commercial kitchen ventilation systems would operate at their maximum designed speed/volume throughout the duration of the kitchen’s operating hours.  In contrast, DCKV provides automatic, continuous control over fan speed in response to temperature or optical sensors that monitor cooking activity.

About Melink Corporation

Melink Corporation is a pioneer in energy efficiency and renewable energy solutions for commercial and institutional facilities. The Cincinnati-based company has become an industry leader comprised of three businesses: Melink Test & Balance provides heating, ventilation and air conditioning commissioning services; Intelli-Hood® applies energy-saving controls to commercial kitchen ventilation systems; and Melink Solar supplies solar photovoltaic project development services for commercial building owners and utilities. Melink works with some of the largest and most successful organizations in the world, including Walmart, Apple, Google, Microsoft, Procter & Gamble, Verizon Communications, U.S. military, Target, Whole Foods Market, Hilton Hotels & Resorts, Honeywell, Siemens AG, PNC Financial Services Group, Inc. and Massachusetts Institute of Technology. In addition, Melink operates in a LEED Platinum and Net Zero Energy office building, making it the greenest building in Ohio. For more information, please visit melinkcorp.com

About ENERGY STAR

ENERGY STAR® is the simple choice for energy efficiency. For more than 20 years, people across America have looked to EPA’s ENERGY STAR program for guidance on saving energy,
saving money, and protecting the environment. Behind each blue label is a product, building, or home that is independently certified to use less energy and cause fewer of the emissions that contribute to climate change. Join the millions already making a difference at energystar.gov.

Contact:

Lucinda Carl

Melink Corporation

Marketing and Sales Specialist

T: 513.965.7300

E: [email protected]