Why Recommission?

Building commissioning is often viewed as a one-time procedure performed during a building’s initial construction, among hundreds of other tasks.  (That is, if commissioning was even performed at all… which is another topic in itself!)  An investment was made into ensuring that the newly constructed systems were indeed installed correctly and operating properly.  So then, if a building was already commissioned, why would you want to recommission it?

Before answering that, we should first define what recommissioning is.  Simply put, recommissioning is a process that helps get a building back to the operational performance that was intended from the initial design and construction.  It’s much like a tune-up for your car.  Commissioning occurs during the design and construction of a building.  Add the “re” to commissioning, and it implies that you are “commissioning again” an existing building that was previously commissioned.  In a similar way, when you add “retro” to commissioning, it implies that you are “going back and commissioning” an existing building that was never commissioned before.  According to the Building Efficiency Initiative, “it can often resolve problems that occurred during design or construction, or address problems that have developed throughout the building’s life as equipment has aged, or as building usage has changed.”

The process to recommission is often and best done on a planned, recurring basis.  This is because buildings change over time.  Just because a building’s systems were optimized when it was first commissioned, doesn’t mean they will stay that way forever.  As with most things, building systems wear and their performance degrades over time.  For example, a building may undergo a remodel or the way its space is used may change, pieces of equipment fail and are replaced, control setpoints are tampered with, and sensors fall out of calibration.  Recommissioning can help to diagnose the source of issues and identify building systems that have drifted, leading to higher energy costs and other negative side-effects.  Such issues include duct air leakage, HVAC and lighting left on while a space is unoccupied, airflow not balanced, dampers and economizers not working properly, improper setup or failure of controls, and much more.

Identifying and correcting these issues through a recommissioning process will lead to significant energy savings. It is important to recommission your building every 3-4 years. According to a report by Lawrence Berkeley National Laboratory, commissioning produced 16% median energy savings in existing buildings with a payback time of 1.1 years.  Furthermore, recommissioning results in a healthier and more comfortable environment for the building occupants, which is not as easy to quantify as energy savings but is even more impactful to an organization’s success.

The Advantages of Optical Sensing in Demand Control Kitchen Ventilation Systems

As the inventors of demand control kitchen ventilation for commercial kitchen systems over 25 years ago, Melink is solely focused on providing maximum energy savings with safe and reliable controls for our customers with our Intelli-Hood® system. Not surprisingly, we’ve learned a lot of things over these years and continuously improve our controls based on lessons learned, industry trends, best practices, technological advances, laboratory and field research. Our industry leader status makes us a ripe target for competitors and naysayers, to which we welcome and enjoy engaging in a healthy debate to advance the usage of demand control kitchen ventilation across the globe.  To this end, I would like to address a document produced by a manufacturer and a respected goliath in the kitchen ventilation industry. 

*All text in red is directly taken from a Captive-Aire produced document obtained by Melink*

The Captive-Aire Demand Control Kitchen Ventilation (DCKV) system controls the fan speeds based on heat generated from the cooking appliances in comparison to the room temperature. Captive-Aire has done extensive research into the effectiveness and practicality of sensing smoke to override the system and turn on the fans. Melink offers an optic sensor inside the hood, which, if penetrated by smoke, will automatically turn the fans to high speed. This is one of the primary differences between Melink and DCKV. 

Melink has performed extensive research over the years into various sensing methods, including space temperate versus hood canopy sensing (delta T) methods, and fallacies discovered in the delta T method is what led us to the patent for utilizing optical sensors in conjunction with heat sensing. Our research uncovered many external factors in the kitchen environment that caused false readings including cross drafts, supply air configurations, door openings and seasonal temperature changes that could trick the system into a cooking response and eliminate energy savings.

Another challenge in the temperature only approach is determining the level of cooking based on these temperature changes alone as the cooking effluent (smoke, steam, etc) often presents itself before a strong thermal plume on the temperature sensor. For example, if you place a cold hamburger patty on a grill the temperature will initially reduce as the heat transfers into the food while creating effluent that must be captured by the hood.  Systems reliant upon temperature only are slow to react to this change and you are left with two options; decrease the temperature range of the system so it runs full speed at the slightest presence of heat (diminishing any energy savings), OR don’t effectively capture the effluent in the hood canopy and cause smoke rollout.  As we at Melink like to say, “You can’t capture what you can’t see.” 

We have found that using an optic sensor to sense smoke is very problematic. When installed inside a greasy exhaust hood, the lens will tend to get caked with grease. This will cause the fans to run at full speed all the time, and therefore eliminate your energy savings. As a result, Melink installs small fans to continuously blow air at the lens to try and avoid grease particles from landing there. This is another component the needs to be maintained and serviced regularly. These optic lenses also require an I/O processor to be wired into the system—this is one more component. If anything happens to the lens, fan, or processor the system will fail. This results in a sustainability issue. Electrical components inside a greasy exhaust hood may not be a sustainable option over the course of several years. The optic sensors/lenses need to be cleaned, and according to the Melink manual, should not be sprayed with hot water or steam by the hood cleaner to avoid damage.

 Yes, our system has a brain and it’s called the System Controller (formerly I/O Processor referenced). All demand control kitchen ventilation systems have some sort of controller to interpret the signals coming in and we like to think our brain is pretty special.  In fact, unlike most competitor systems that utilize an off the shelf PLC controller we custom design ours for the sole purpose of saving you energy in the kitchen and integrating into your building.  Our System Controller is native BACnet (IP), internet ready, 4G wireless capable and has the brainpower to control up to (39) kitchen hoods and (64) exhaust or supply fans. 

We do utilize a component called the Air Purge Unit (APU) that contains a 12VDC fan to direct airflow into the optic housing to maintain a positive pressure environment to alleviate grease buildup.  However, kitchens can be harsh environments and depending on the appliance type underneath these could benefit from a monthly swipe with a clean cloth if it’s above a high grease producing appliance, but less intensive appliances mean less cleaning.  Fortunately, we use that big brain of ours to automatically re-calibrate the optics every day based on cleanliness for optimal performance and if it gets too dirty the system will alert you via the Touchpad or email as to which hood may need cleaned.  

Additionally, a typical Melink system costs much more than a Captive-Aire DCKV so the payback period for a Melink system is much longer.

Not necessarily, the formula for the simple payback period is the initial project cost divided by the annual savings to determine at what time the investment breaks even. If a more intelligent system can save 3x the energy of temp-only system, then the simple payback periods are equal. The downside of this metric is the failure to account for the time value of money and consideration of cash inflows beyond the payback period.  It’s important to look past first cost and take into account the full savings yielded over the life of the system and perform life cycle cost analysis. 

For example:

        Temp-Only System

  • First Cost = $5,000
  • Annual Savings = $1,500
  • Simple Payback Period = 3.3 Years
  • Energy Savings over (7) Years = $10,500
  • Net Savings: $10,500 – $5,000 = $5,50

Melink Intelli-Hood®

  • First Cost = $15,000
  • Annual Savings = $4,500
  • Simple Payback Period = 3.3 Years
  • Energy Savings over (7) Years = $31,500
  • Net Savings: $31,500 – $15,000 = $16,500

Over the life of the systems in this example Intelli-Hood® will yield $21,000 in more energy savings vs. the competitor, less the initial capital difference of $10,000 ($15,000 – $5,000) = $11,000 more in
free cash flow.  This example does not factor in the time value of money.   

The below data shows the savings difference when a Melink Intelli-Hood® system was installed at a restaurant previously using a temperature only system. The baseline data was provided to the owner by the temp-only hood manufacturer, and we analyzed the electrical and conditioned air savings via our Estimated Savings Report.  Once the Intelli-Hood® system was installed we compared the data and found that Intelli-Hood® system yielded 523% more savings than the previous system. Click here to see real IH performance results.

 

Testing has shown that very sensitive heat sensors are as effective as optic sensors in triggering exhaust fans if heat or smoke is present. If cooking generates smoke, then the cooking process will also generate heat. The heat sensors in the Captive-Aire Demand Control Kitchen Ventilation are easily adjustable as different project and applications may require.

Through our own testing in the lab environment, and more importantly the lab of reality in the commercial kitchen with over 10,000 systems, temperature sensing alone will not allow for a quick response to smoke. Based on our data obtained from an installed temp-only system, the heat sensors appeared to provide no active modulation and acted basically as a two-speed system with an active base speed of 80% and quickly ramping a holding a constant speed of 100% through the day since the appliances were on. Again, without the ability to visually monitor the cooking a temp-only system must be run at much higher minimum speeds as a safety net for capturing effluent. This is a major energy savings penalty.

The heat sensors may be “easily adjustable”; however, this requires human manipulation and functional commissioning.  Most often these systems are sent to a mechanical contractor with the instruction to connect the temperature probes to control panel and are left at whatever the default factory setting is.  We like humans too but given the chance we like to engineer around potential issues and lack of consistency from one contractor to the next around the world.  Thus, we patented another feature dubbed “Auto-Temp Span”, which collects performance data from every sensor in the system at defined intervals and automatically sets the optimal temperature spans for every hood in the system.  If the chef decides to change menus, appliances, or a new tenant takes over the space the system will learn these new habits and self-commission for optimal performance.  Call it “machine learning”, call it “artificial intelligence”, we call it a good idea that benefits the end-user.

Lastly, the DCKV has a 100% air override button to send the fans into full speed as a safety precaution.

This override button feature is a code requirement for all demand control kitchen ventilation systems; we have one too.

Here are a few additional differences between Captive-Aire DCKV and Melink Intelli-Hood®:

  • Captive-Aire DCKV is typically programmed with a “prep mode” feature to allow greater energy savings. This feature will run the exhaust fans at a very low speed
    (typically, 20% speed) when the system is first turned on by staff or BAS. This speed is equal to the design differential between exhaust and make-up air. DCKV will run in prep mode until the heat of the appliances necessitates greater exhaust at which point the exhaust and make-up air will both ramp up and cooking mode will commence.
    Melink as currently designed runs both make-up air and exhaust at 50% of its design. 
  • In cooking mode, Captive-Aire designs for a 20% reduction in fan speed during light load cooking times. This reduction is based on extensive research on the topic. Lab testing by The Food Service Technology Center in California has shown that no more than a 20% reduction from a proper design cfm can be made in order to allow the
    system to adequately exhaust appliances when in light load. The Melink system allows for a 50% turndown, therefore, in order for that amount of
    reduction to work properly, the design cfm would have to be increased so the system still works effectively at a 50% reduction. A lower design cfm with 20% fan speed reduction will be more efficient and save more energy than a higher design cfm with 50% fan speed reduction. Captive-Aire DCKV has the ability to provide a 50% turndown, but we do not recommend this. 

From our perspective, this represents nearly a three-speed system with “modes” to make up for the lack of technology, sensors, programming, and algorithms to modulate based on real-time cooking information and optical monitoring, resulting in a loss of energy savings ability. As representative in our data, the temperature spans are typically set so low with these systems, that as soon as any appliances are on, the fans run at an 80% minimum for a very short amount of time and then jump right to 100%.  Unfortunately, it’s pretty rare to see any appliance gas valve regulation in commercial kitchens and most appliances are left at nearly full temperature all day independent of actual cooking, which causes temp-only systems to run at or near full speed all day. We’ve also come across several temp-only systems in the field running at 100% speed when the exhaust temperature read 72 and 73 degrees Fahrenheit.

The Melink Intelli-Hood® system is capable of 20-30% minimum speeds as well, but turn-down ratio is a moot point when the rubber meets the road, or when the meat hits the grill in this case.  Our default minimum speed is 30%, a 2% electrical energy difference vs 20%, and we actively modulate through the entire speed spectrum to 100% to maximize energy savings.  The key to electrical energy savings in motor applications lies in the Law of Affinity (below), which at the top of the fan curve roughly translates to a 10% speed reduction = 25% electrical energy
savings. The key to savings with demand control kitchen ventilation is having the optics to safely and actively modulate at the upper ends of the spectrum during the cooking day to maximize savings near the top of the fan curve between 70-100%.

 

In addition to electrical energy savings from the motor control, Intelli-Hood® also integrates into the make-up air system to modulate based on the exhaust demand.  This modulation provides additional conditioned air savings and can have a significant impact on the payback of the system.  The more extreme the outdoor air environment, the greater the opportunity for energy savings in the reduction of the heating or cooling loads.  The ratio of savings for conditioned air is 1:1 with fan speed reduction, i.e., a 30% reduction in speeds = 30% reduction in conditioned air.

With nearly 20 states adopting ASHRAE 90.1 2010, or higher, energy standards it’s clear that demand control kitchen ventilation is here to stay and we’re proud to have launched this revolution back in 1989.  One of our core values at Melink is Innovation, and we continue day in and day out to develop more advanced commercial kitchen control systems to save our customers valuable money and hopefully make the planet better for our future generations one hood at a time.  Feel free to contact us regarding your next kitchen design involving demand control ventilation or if you’re an existing operator of a commercial kitchen looking to save money, we happen to be experts in retrofits as well.

Climate Change: A Moral Imperative

As the President of Melink Corporation, I’ve always been a bit uneasy publicly commenting on anything that is political or could even be perceived as political.  We live in extremely polarizing times and I’ve never wanted to ostracize anyone; I’m too pragmatic.  It’s not my job to get political.  My job is to run a company, to serve our customers, employees, strategic partners, and other stakeholders.

Isn’t it?

…No. 

Our climate is changing and the vast majority of scientific evidence clearly suggests that humankind is the cause.  So why should you or I stay silent just because the issue has been politicized?  For one thing, climate change should never have become a political issue.  It’s a moral imperative, a matter of national security, and an unfathomable economic opportunity.  Fighting a changing climate is the right thing to do, because it’s the right thing to do.  Our children and grandchildren deserve the same chance at a healthy and happy future as we, our parents, and grandparents had.  How many wars have been fought, lives lost, over natural resources?  Clean energy comes from technology – not fuel sources such as oil or natural gas.  Pursuing a sustainable future also means pursuing a more peaceful future.  And as for economic opportunity – the world is going green whether you like it or not.  The United States led the industrial and technological revolutions of the past.   Leadership of the clean energy revolution is ours to seize.  Doing so would foster unparalleled economic growth for decades to come.  Not doing so will leave us lagging behind in a world that moves faster today than at any point in human history.  United we stand.  Divided we fall.

So, the way I see it, it’s not just my responsibility to speak up – it’s up to all of us.  Silence only gives the political rhetoric more power.  Leaning on the facts, using our voice, and taking action, will literally change save the world.  Honestly, who doesn’t want to help save the world?

Determining if DCKV is Right for You?

When a customer is first debating if Demand Control Kitchen Ventilation (DCKV) is right for their facility, there are multiple questions that come to mind. What is a good application for DCKV? What does it cost versus the lifetime payback? Does it actually slow fans down that much? What is the ability for service in the future?

All of these are valid questions. The most important thing is to partner with a company that works with your team to evaluate and determine what solution is best at the onset of reviewing the opportunity. In order to answer the above questions, the DCKV provider should be asking you the following at minimum:

  • What is the size of the hood(s) (Length X Width)?
  • What is the schedule of the exhaust fans, do they only run 8hrs/day, 12hrs, 24hrs?
  • What kind of equipment is underneath the hoods?
  • What are current utility rates for your area of the country?
  • Is there dedicated supply air to the kitchen space?

With this information the DCKV Manufacturer should be able to provide some advice.

What is a good application?

Four primary factors play a role in this answer. They include: utility rates, total fan horsepower (Exhaust + Supply), exhaust fan run hours and your geographic location.

The total horsepower is self-explanatory. The greater the HP the larger available savings. However, lower horsepower may not disqualify an application. If there is a total of 5hp between exhaust and supply, operating longer than 12hrs/day, with moderate utility rates of at least $0.08/kWh, DCKV systems can be a feasible savings opportunity.

Fan operating hours additionally play a role based on the savings, the longer the operations the greater savings. This type of savings can be compounded depending on the geographic location as significant conditioned air savings can be recognized. 

What does it a system cost versus the lifetime payback?

The cost of a system will vary based on the complexity as well as the selected technology. Two options are a temp only based system or one that incorporates additional optic sensors. Although a temp only based system may cost less, it is important to evaluate savings over the lifetime of equipment compared to a system that incorporates optics.

Assume a 12-year life cycle of equipment. For the sake of this discussion, we will evaluate the following scenario:

  • Single Hood (20ft long)                  –   24hr Fan Operation
  • 5hp Exhaust (5000cfm)                  –   $0.10kWh
  • 3hp Supply                                          –   $1.02therm
Cost Avg. Run Speed Annual Savings Simple Payback Lifetime Savings (12yrs)
Temp – Only $7,000 80.5% $3,502 2.0 yrs $42,024
Optics Based System $16,000 58% $7,865 2.0 yrs $94,380

As seen above the lifetime savings of an optic based system is greater than twice the amount of a temp-only based system. It is important for a DCKV partner to offer a solution best for the customer’s needs, perhaps a blended system would provide the largest amount of savings. For example, perhaps on a larger kitchen, there is significant savings opportunities for one or two of the hoods. However, another single hood has only a single pizza oven underneath, this is when it is important to partner with a manufacturer who has technologies that will maximize savings, such as auto-temp spans and scalability of their system.

Does it actually slow fans down that much?

In the savings example above there is a significant disparity between the average runs speeds of a Temp Only based system and that of a system including optics. When reviewing and selecting a DCKV system, it is important to have proven data of performance. Look for manufacturers that have case studies for their technologies, and significant volumes of measurement and verification. Every market sector is different regarding a 24hr average run speed. As a buyer do not hesitate to ask for examples of performance for your market being evaluated. You can also utilize third party publications such as Demand Ventilation in Commercial Kitchens An Emerging Technology Case Study, written by Fisher Nickel, Inc found here.

What is the ability for service this in the future?

One final important aspect to consider is what happens post installation. Commitment from a manufacturer to service over the lifetime of a system is very important. Does your DCKV partner go beyond the standard warranty? Certain manufacturers offer 24hr engineering technical service. Do they have a service network of technicians available to visit your site if needed? Another consideration is where would replacement parts be purchased from. Some manufacturers have components manufactured outside the United States which can delay delivery and in return create a headache for you to provide consistent service to your customers.

Another important focus on the future would be, what is the adaptability of the system? Everyone has seen a kitchen space eventually be remodeled and cooking equipment is swapped out for a new concept. Perhaps there is increased heat from this equipment change, so can the originally selected system adapt to this change? Certain manufacturers have temperature probes that area initially calibrated at startup based on initial equipment. On the other hand, Melink Corporation’s Intelli-Hood, offers an Auto-Temp span, that self-calibrates, and spans based on trends of continuous data points and monitoring therefore, an equipment change resulting in an increase or decrease in heat load will be recognized and self-adjusted for maximum savings.

How to decide what works for you.

In closing, there are many important variables to consider when selecting a product including DCKV. To some, upfront cost is a primary concern, and to many other end users the most important may be what happens over the life of the system. “Will the manufacturer provide me support?” and more importantly “How much will this save me over time?” Many of us are always saving for our retirement, perhaps now is the time to invest in the savings that are available within your kitchen. Personally, I would love to save double that over a lifetime of a system for a product with the same initial payback.

TOP 3 Points to Consider Before Scheduling an HVAC Balance

There are a few important items that you want to take into account before you schedule an HVAC balance. While these 3 points may seem obvious, there are many instances where a technician gets onsite and the job-site isn’t ready or they can’t access areas that they need. These tips can save time and money for everyone!

1. HVAC equipment is installed and operational.

This one seems like a no-brainer! However, there are always occurrences when a technician arrives onsite to perform a balance and necessary equipment either hasn’t been installed or isn’t properly operational. Examples include VAV’s or dampers that haven’t been installed, or a RTU that isn’t operational.

Ensuring that all ductwork has been completed, balancing dampers are properly installed, any grilles, registers and diffusers are installed, and the RTUs have clean filters helps make sure a technician can provide a proper air balance, as well as mitigate any potential return service costs. Making sure that all equipment (especially RTUs) has undergone a proper start-up to confirm power should always be completed ahead of Melink’s arrival.

2. All HVAC equipment can be easily accessed by a technician.

Another hindrance to any proper test & balance is not being able to access the necessary equipment. This includes equipment installed inside the building, as well as equipment on the roof. When working with a customer located inside a mall or shopping center, security and approved roof access becomes another added component.

Melink typically requires assured access to all applicable HVAC system equipment, including RTUs, VAVs, Exhaust Fans, dampers, etc. Access to fully open dampers, ceiling-height diffusers, and thermostats that may be in an office is necessary to properly complete the balance. Our Account Coordinators will also discuss roof access, security measures, and accessibility to ladders or lifts.

3. Allotting adequate time (2-3 weeks) to schedule and complete the balance.

Though some seasons are busier (or slower) than others, our goal at Melink is to provide every customer the same level of service excellence no matter the time of year. This includes communication with the customer, scheduling the site visit with one of our National Network technicians, performing the balance and working with the customer on any punch-list items, and finally, providing a certified test & balance report.

Our team of National Account representatives and technicians work with the customer through each step of the process. Scheduling an HVAC balance with Melink approximately 2-3 weeks out from turnover will help to ensure a proper and complete balance. It also allows enough time to work through any punch-list items or lingering comfort issues for the customer.

The Cooperative Advantage

The Solution…Cooperative Advantage

Articles and opinion pieces discussing Universities and Colleges alike seem to constantly be in the news and going viral on social media regarding the high costs to attend and the inevitable debt that most students incur. At the same time many employers have a high bar to even be considered for an entry level position. I can recall in the early days of my career applying for entry level roles with requirements like:

  • Bachelor’s degree in engineering or technology required – MBA preferred
  • 2 years of technical experience required – 3+ years preferred
  • Leadership experience required

With a high barrier for entry with high associated costs, how can employers and students or employees both win?

Several Universities have implemented a strategy, going back several decades, allowing for a win-win both for students and employers. What strategy? Cooperative education programs, or also known as: Co-ops. We like to call this the Cooperative Advantage; helping students and employers alike.

In 1906, the University of Cincinnati (OH) was the first to implement such a strategy. This strategy or Co-op program has evolved, and today is a requirement for many students depending upon the curriculum of their program or college. Students within The College of Engineering and Applied Science (CEAS) are required to have a minimum year of full-time paid experience as a part of the curriculum. Many students have even more full-time experience, with some having as much as two full years of paid full-time experience before graduation!

Other colleges such as Cornell University and Northeastern University have similar Co-op programs. These programs require students to partake in a professional experience.

At Melink Corporation, we regularly employee Engineering Co-op students. For nearly 5 years, we’ve had great success in developing future leaders in our program, meanwhile providing a boost to our day-to-day operations. Co-ops have delivered unexpected benefits such as keeping us all up to date with the latest trends, whether it be Crypto-Currency or Pokémon Go!

 Don’t just take it from me…

Current Melink Employee: “These students become key members that directly contribute to the team. They assist in many roles such as project management, estimating, sales efforts, and customer service.”

Current Melink Co-op Employee/Student: “This Co-op experience has reinforced the importance of communication and deadlines. My course material may not be easier afterwards, but how I learn, study, and work as a team will be.”

The Co-op experience allows students to get paid and learn more tangible/transferrable skills on-the-job. At the same time, employers have the opportunity to bring fresh perspectives to their team, receive some productivity, and groom potential future employees or even leaders of the company!

Co-op programs are a great solution to the cost of education and barriers for entry level roles. Over the last 5 years, Melink has had about 2 co-ops per year. Our more long-term success rate of hiring these students full time after graduation has been nearly 50%! I ask you, as a student or potential hiring employee to consider the positive impact a co-op program.

The Melink Umbrella

Are you an existing customer or follower of Melink?  I’m guessing the answer is “yes” if you’re reading this, so what all falls under the “Melink Umbrella”? In the Cincinnati, OH region, we’re best known for our super-green energy efficient HQ building. Those things help to show who we are as a company; however it isn’t always clear in what we do as a business to support this mission of changing the world one building at time. 

To help illustrate the offerings at Melink, pretend you own a hotel, restaurant or operate an entity involving a commercial kitchen facility.  Prior to leaving for work, you utilize your smartphone to check your building’s health for your employees and customers by swiping open your PositiV app. You check the latest building health makers for indoor CO2, temperature, humidity and building pressure.  The building pressure has been trending negatively for a week and notify your Melink Test, Adjust, & Balance account manager.  Next, you request an investigative visit to determine the root cause and next steps for corrective measures.  Upon arrival, a field-technician identifies the outside air damper on your RTU has been locked shut.  An insufficient amount of fresh outside air is being supplied to your building. 

This negative air pressure situation would have been substantially worse; however you have Intelli-Hood. A demand control kitchen ventilation system that adjusts exhaust fan speeds to cooking demands.  Your Intelli-Hood control system automatically turns on in case the prep crew starts cooking without the fans. It also preemptively warns your team if there’s an issue with the exhaust fan to mitigate risk from fire.

Knowing your building is back to optimal conditions you head to the back office. You start to review your utility bill statements and prepare payments.  You’re shocked at the 40% electrical bill decline. Then you remember the newly installed and commissioned HVAC rooftop unit.

Welcome to the Melink Umbrella.  Not all customers can benefit from the full suite of offerings, but these services make us a stronger partner for our customers. They invest in business growth in a responsible, sustainable manner, help us change the world, one building at a time. 

“We’ve Done Benchmarking. We’ve Done Lighting. What’s Next?!” Kitchen Ventilation.

The Benefits of DCKV

Kitchen ventilation, both exhaust and make up air, represent a significant opportunity for kWh and kBTU reductions in your facility. Demand Control Kitchen Ventilation, (DCKV) uses temperature and optic sensors to vary exhaust speed and make up air fans.  This is in response to precise cooking intensity underneath all kitchen hoods. With fans only running as needed, savings are gained on fan energy (controls produce 40-60% average fan speed versus 100% without controls). In addition, there are heating and cooling savings gained as a result of kitchens not evacuating all air that was just conditioned.

These controls can be installed in new construction projects. They’re usually specified by engineering firms in the design phase of your project, and should qualify for one LEED point. In addition, DCKV is a path to compliance for commercial buildings’ energy codes for states that have adopted ASHRAE 90.1 2010 and greater. You can see what your state’s requirements are here.

Retrofitting

Retrofitting the temperature and optic controls within existing kitchen exhaust hoods is equally effective at generating energy savings. It’s important to confirm that the controls are UL 710 and 2017 listed. This permits them to be installed in any manufacturer’s hood in any cooking application. There are many utility rebate incentive programs available for the installation of DCKV as well.

Kitchen Ventilation in Action

The financial impact for hospitals’ operating costs is significant when kitchen exhaust and makeup air fans no longer run at full speed 24/7.  A study by the EPA demonstrated that each dollar saved by a non-profit hospital, is the same as generating $20 in new revenues. Incidentally that same dollar saved in a for-profit facility is like increasing EPS by one penny.

Melink recently completed a Mid-West hospital project that produced $20,000 (per year) in combined savings. The savings included electrical, heating and cooling costs. Using EPA study metrics, this equivalates to $400,000 in new revenue for this facility.  Taking rebate incentives for our technology, the hospital’s ROI was less than one year.

The Purpose of DCKV

The goal of any DCKV project is to install controls that maximize the energy savings within the kitchen. In addition, DCKV will assist compliance with building energy codes, attain LEED points and make kitchens quieter and more comfortable. This article goes into greater detail and dives deeper into how these controls pay back initial investment. The articles recently appeared in the American Society for Healthcare Engineering publication, Inside ASHE.

Find the Inside ASHE article on kitchen ventilation here.

HVAC Systems – How to help ensure a good investment

Life of an HVAC System

Heating, ventilation, and air conditioning (HVAC) equipment is similar to your car; it can last 7-20 years! The life expectancy largely depends on the quality of the equipment, and how the equipment is maintained. Without a maintenance log of all your systems, how do you estimate the remaining ‘miles’ your equipment has left? The answer – have an independent HVAC site survey.

Benefits of Site Surveys

Performing an independent HVAC site survey before purchasing new HVAC equipment, helps to ensure you are making the right decisions. During an HVAC site survey, or HVAC audit, independent partners help you determine the current state of your equipment. To do so, your independent partner should tailor a unique scope of work to help you with your specific needs.  HVAC site surveys can be complex with much focus on the fine details, or it can be a more general inspection of all equipment. Explain to your independent HVAC partner your situation and goals, then let them help you create a plan or program that suites your needs.

Self-Performing

“Why are you underlining independent?”, you might ask; because it is vital to ensure the gathered information is unbiased. Your partner should be a true owners advocate, working while looking through the eyes of the end owner. This task may be complicated for your equipment providers, preventative maintenance providers, and internal employees, there may be a conflict of interest in reporting one outcome verses another. One other important question to ask your independent provider is – “Are you self-performing?”.

You might be thinking – “Here we go again with these underlines.”, but self-performing is just as important as independent. Performing an HVAC site survey is a quality control related process. To fully achieve a high-quality result in your HVAC site survey, you should consider using a self-performing company. A self-performing company will use 100% of their own employees to survey your equipment. Therefore, the end product, or HVAC site survey report, is created from the findings of trusted partners or direct employees.

Once the time is right to replace or repair HVAC equipment, be sure to consider having an independent partner help you along the way. We’d appreciate if you’d consider Melink Corporation. We have a national network of self-performing technicians, and have been working with national and regional partners for over 30 years! Let us know how we can help!

Energy Conservation in Commercial Buildings

There’s no doubt that energy conservation in commercial buildings (or any building for that matter) is important.  Reducing operating costs are important for valuations, freeing capital up for other projects or simply reducing the carbon footprint of your building, or portfolio of buildings.  There are many different ECMs (energy conservation measures) available to companies to help achieve these goals, and almost always the decision to use certain measures comes down to “I have to be at 3 years or less for the simple payback”.   While financial metrics are important, I believe that this focus often obscures the soft benefits to the building’s occupants and workers.

 A noise study was recently completed where a corporate kitchen’s noise levels were measured before and after the installation of variable speed controls on both the hood exhaust and supply fans. Traditionally kitchen exhaust fans run at 100% speed for constant periods of time.  With the addition of a variable speed system, like Melink Intelli-Hood, fan speeds are reduced to slower speeds when cooking isn’t at its maximum.  From an energy savings perspective there are two buckets of operational cost reductions, fan energy and conditioned air.  The chart below shows that when the kitchen fans are operating at 100% speeds the decibel level is just short of what a fire alarm sounds like when activated.  With the addition of the variable speed controls, the site realized much lower average fan speeds, as well as a reduction in kitchen noise levels to just below conversational speech, or a reduction of 11 decibels. 

The financial metrics for this project met all approval hurdles and the site is very happy.  For a moment, think about the Chef and his staff.  Their work environment has now become much more quiet.  They can hear each other better when they’re coordinating and preparing meals for several hundred employees each day.  Shouting and miscommunication is greatly reduced, and their environment is more pleasant.  This particular improvement would be hard to show on an income statement…or would it? 

As one example, within Seniors Housing, Dining Services is consistently near, or at, the top in employee turnover percentages.  The current industry turnover rate is 36.91%, (McKnight’s Senior Living, Salaries and Benefits Report 2017-2018) with Certified Nurses Aids coming in a close second at 34%.  It will cost a facility approximately $2,500 in recruiting and training to backfill a single new employee.  Compound that amount with multiple hires each year and it gets expensive very quickly.  If along with reducing energy costs a site can also create a better work environment for its full time employees (FTE), then perhaps that large expense can begin to be reduced and more employees will remain on the payroll instead of seeking other places to work. 

See the full case study here or contact us today to learn more about Intelli-Hood and the benefit of kitchen hood controls.