Creative Financing Pays for Itself with Intelli-Hood

Drastic Turn

2020 has been the most unique year to date, especially when it comes to the economy. Coming off 2019, the economy was strong, companies were reinvesting and spending money. The economy looked like 2020 would be another great year — until March. Enter COVID-19; companies that could endure the pandemic had to pivot fast. Predictions for a record year were gone in a moment. For months, businesses across the country shut down.

Like other businesses, Melink tried to come out the other side of COVID-19. Many felt more timid than ever about spending cash, and understandably so. Numerous projects put on hold as capital expenditure budgets froze for 2020, 2021, and even 2022 in some cases. 

Melink’s company mission is to change the world one building at a time. We achieve this by implementing energy efficiency and renewable energy solutions into commercial facilities for decision makers. Intelli-Hood is a Demand Control Kitchen Ventilation (DCKV) system that saves money by reducing monthly operating expenses in commercial kitchen facilities. Often, Intelli-Hood pays for itself in one to three years, making it an attractive energy conservation application.

Intelli-Hood Controls

The question arises: How do we change the world one building at a time with spending on an indefinite pause? 

Creative Financing Solution

I worked with a university that wanted to implement Intelli-Hood in a kitchen. Without any utility rebates taken into consideration, the $62,000 project would pay for itself in less than three years. Everything was moving smoothly until COVID-19 put everything on pause. But Melink’s committed to working with customers and customizing energy solutions. As a result, discussions were continued with the university. We were able to come up with a creative financing solution that’s win/win for all parties: an Equipment Loan Program. Thus, the customer paid nothing out of pocket, while simultaneously being cashflow-positive the second we walk off the job site. Working with a lender, we got the $62,000 financed for the university over five full years at monthly installments of $1,287. This was a total investment of $77,220.

The Savings Stack Up

At Melink, our proposals come turnkey, along with a custom Energy Savings Report. The reports give an idea of how much money you will save with Intelli-Hood. In this instance, the customer was going to save more than $18,000 in energy savings the first year alone, resulting in a positive cashflow of almost $3,000. On average, utility rates go up 3% every year, meaning that with the customer locked into an installment payment of $1,287 for 60 months, the positive cashflow will continue to increase year over year. After five years, the loan will be paid off in full and the benefits really kick in, saving more than $20,000 per year. Thus, creative financing creates more opportunities for customers to save on energy costs.

Looking at a 10-year period, the customer is going to save more than $130,000 without having to pay anything upfront. While a traditional purchase would save more money ($148,000) over the same 10-year period, it would require the full upfront cost paid in full. 

Intelli-Hood Creative Financing Return on Investment
A graph comparing Intelli-Hood Investments against creative financing

So, if your business is in a similar position where your budget is paused but you are still interested in saving energy, reducing greenhouse gasses, and cutting operating costs – maybe this creative financing can work for you, too. We can continue to work together to change the world one building at a time, all while exploring realistic options in the current economic climate. 

Professional Development: ASHRAE & Melink

Melink Corporation is passionate about supporting the HVAC industry through its clean energy solutions. To share our field knowledge in commercial kitchen ventilation, as well as test and balance, several employees serve on professional boards like the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE).

ASHRAE logo

What is ASHRAE?

ASHRAE is a professional association to advance the design and construction of heating, ventilation, air conditioning, and refrigeration systems. The international group has more than 50,000 members in more than 130 countries. Most members are building service engineers, architects, mechanical contractors, building owners, and equipment manufacturers. ASHRAE is known for supporting research projects, offering education programs, and publishing technical standards.

Overall, ASHRAE’s technical standards support safety, occupant health, and energy efficiency. These standards establish consensus for testing methods for use in commerce, as well as the performance criteria to guide the industry. ASHRAE publishes the following three types of voluntary consensus standards:

  • Method of Measurement or Test (MOT)
  • Standard Design
  • and Standard Practice.

ASHRAE does not write rating standards unless a suitable rating standard will not otherwise be available. ASHRAE is accredited by the American National Standards Institute (ANSI) and follows ANSI’s requirements for due process and standards development.

Melink & ASHRAE

Jason Brown
Jason Brown

For many years, Melink Corporation has supported ASHRAE. Employee-owners, including CEO Steve Melink, have written journal articles, technical standards, and presented at conferences. Most recently, Jason Brown (Senior Sales & Applications Engineer) and Bryan Miller (Vice President of Technology) have volunteered their time and expertise.

Here’s a closer look at Melink’s support of ASHRAE:

 
Bryan Miller
Bryan Miller
  • ASHRAE operates through committees. Through the committee structure, members decide policy, develop procedures, and direct the organization’s activities. Brown and Miller have been active for several years on two ASHRAE committees. Brown is a voting member of the following committees, meaning he has influence on what does and doesn’t pass in the committee proceedings:

    Technical Committee on Commercial Kitchen Ventilation (TC 5.10) Technical Committees (TC) are responsible for identifying research topics, proposing research projects, selecting bidders, and monitoring research projects funded by ASHRAE. Information about research programs is discussed at each TC meeting and at the TC’s Research Subcommittee meeting. For instance, the TC 5.10 Committee, in which Brown serves, is concerned with the design, construction installation, commissioning, and sustainable operation of code-compliant commercial kitchens. The committee is also involved with revisions/updates to model codes such as the International Mechanical Code (IMC) and writing/revising ASHRAE Standards. Additionally, the TC develops sessions for ASHRAE’s winter and annual conferences.

    Standards Committee for Commercial Kitchen Ventilation (SSPC 154) This Standards Committee provides design criteria for the performance of commercial cooking ventilation systems in regard to kitchen hoods, exhaust systems, and replacement air systems. Serving on this committee primarily has entailed attending and participating in meetings that occur twice per year.
  • Brown and Miller have assisted with updating sections of the ASHRAE Handbook. The ASHRAE Handbook is a series of four volumes covering HVAC Applications, Refrigeration, Fundamentals, and HVAC Systems 7 Equipment. One volume is revised each year, ensuring that no volume is older than four years. In relation to the committees previously mentioned, TC 5.10 is responsible for Chapter 34 (Kitchen Ventilation) of the ASHRAE HVAC Applications Handbook, which was last revised in 2019. The chapter focuses primarily on kitchen ventilation systems in restaurants and institutional food service facilities. Brown and Miller provided content and graphics about demand control kitchen ventilation (DCKV) systems and variable frequency drives. In addition, for other handbooks, they have provided content on HVAC test and balance commissioning.
  • For further professional development, the Melink employee-owners have attended ASHRAE’s conferences. “Normally we meet biannually for a few days in conference settings, but we have a few virtual meetings in between to vote and discuss topics that are requiring attention in the industry,” said Brown.

Read more about other ways Melink employee-owners volunteer their time and expertise.

Becoming an Intelli-Hood Sales Engineer (During a Pandemic)

 

Sales Engineer. These are two words that most of us have a clear understanding of their respective meanings. But what about when they are put together? Well, I ‘m not sure what to expect either, but it sounded like a challenge, and I like those. I’m new to the Demand Control Kitchen Ventilation (DCKV) industry but well-versed in technology and mechanics due to my background. So, when I took the role of a Melink Intelli-Hood Sales Engineer, I felt well prepared.

Then, enter COVID-19

Onboarding plan? Derailed. Customer visits? Cancelled. Installations with field service techs? Not attending. How was I supposed to embrace my role and be a valuable addition to the team? 

What Next?

That’s where my Melink family stepped in. To continue with business “as normal,” we, like other companies, took advantage of virtual meetings, trainings, lunch-and-learns, and other digital tools. These tools were not thought about or utilized even just 10 years ago! As the pandemic unfolded, our work progressed, thanks to these digital tools. I immediately saw the value in my new role and Melink’s value to their customers.

For instance, indoor air quality became a topic of daily conversation. Essential facilities, like grocery stores and hospitals, were now on the front lines. I helped get Intelli-Hood® kitchen ventilation controls into these areas and ensured first responders had healthy air.

You see, Intelli-Hood learns to optimize your kitchen ventilation by using temperature probes paired with infrared optical sensors. The optics pick up on airborne contaminants in the form of smoke and then trigger the variable frequency drives. The exhaust fan’s variable frequency drive (VFD) adjust to the appropriate speed to ensure adequate evacuation of the effluent. Smoke being present does not have to mean that heat is, which is one more way that a Melink Intelli-Hood control system ensures continuous capture of all effluent. As if that was not beneficial enough, the system is also ensuring that more of the pre-conditioned air is staying in the occupied spaces instead of being wastefully exhausted from the kitchen due to continuous discharge ventilation.

Melink Intelli-Hood System

Looking to the Future: Customized Solutions

Pre-COVID-19 and now, I spend each day as a Sales Engineer building customized quotes for our customers’ unique needs. As requests for new construction sites roll in, I work with my Business Development Manager to go through the plans for each site, reviewing the kitchen designs and ventilation requirements, as well as requirements that have been called out by general contractors and food service consultants. Every job requires different exhaust hood types; fan types and horsepower; and temperature monitoring preferences, as well as the possibility of tying the system into a building’s BACnet. All of these items and more are taken into consideration when preparing an accurate, customized quote for our customers.

Thus, these last few months of working in Virtual Corporate America have helped me realize just how adaptable our team at Melink — and our Intelli-Hood controls — really are. COVID-19 or not, these control systems are improving the health and wellness of employees and customers in thousands of locations worldwide, all while being the most energy efficient DCKV system on the market. And the umbrella of Melink solutions extends to other areas, too. When you pair an Intelli-Hood control system with solar panels, a PositiV® unit to monitor building health, and a high-quality Test and Balance plan, you really cannot ask for a more efficient and energy-saving space.

I may only be finishing my first quarter here at Melink as a Sales Engineer, but already I have felt the satisfaction of knowing that what I am doing is making a difference.  We really are making the world a better, greener place, one building at a time.

Intelli-Hood in the Indian Market

Melink’s Intelli-Hood® demand control kitchen ventilation (DCKV) system has long been a global product. But, more recently, we introduced Intelli-Hood in the Indian market.

Developing a New Market

We have officially been working in India for 2.5 years now, but it is still a fairly new and developing market for us. Introducing a company into an already mature market with similar products is very challenging. It takes attention, care, and a product that adds more value than its competitors’.

Before committing to the Indian market, we did our homework. We researched the competitors, key differentiators, competing products, and how we could best offer customer support. We put ourselves in our customers’ place to really understand their needs so that we could ensure we had a valuable product and support team that could help them meet their goals.

If we felt our customer service would be compromised by distance or communication barriers, we would not have entered this market. Melink Corporation prides itself on being a customer-focused service company. From the beginning, it was important to have someone on the ground in India to speak with customers, visit sites, and work with the home office in the United States. (That’s where I come in!)

Speaking of the home office, a critical component to entering the Indian market has been the support of the Intelli-Hood’s U.S. team. They have worked continuously with promptness to provide all the technical details that our customers need, which is the biggest boon to earn customers’ trust. I am really thankful for all the team members who supported the launch of Intelli-Hood within my region. Together, we are bringing an end-solution to save energy in our global environment.

Early Success in India

Because of all the behind-the-scenes work to enter the market, we have seen success.

One of our biggest Indian projects that has been successfully retrofitted with Melink’s Intelli-Hood system is a project in the operation kitchen of a large resort. The kitchen contains all kinds of cooking appliances to prepare food for different cuisines, like Indian, Chinese, Italian, etc. For almost a full year, we have continuously monitored the system from Day 1 of installation and commission. With these real-time result readings, we were able to prove the benefits of our product in regards to energy savings and return on investment, which has paved the way for the approval of many other projects.

Here are examples from this project. You can see the energy savings:

Main Kitchen – Fan Speed Profile
1/1/2019 to 12/31/2019
This kitchen includes five hoods and two exhaust fans. With Inteli-Hood, the customer gained an electrical savings of 1,17,496 kwH/year.

Intelli-Hood in Asian Market Case Study example 1

Secondary Kitchen – Fan Speed Profile
1/1/2019 to 12/31/2019
This smaller kitchen includes two hoods, one pizza oven, and one exhaust fans. With Intelli-Hood, the customer gained an electrical savings of 25,077 kwH/year.

Intelli-Hood in Asian Market Case Study example 2

Based on this information, we are working with the client to analyse more data to help them to be more energy efficient and to lower their operating costs.

What’s Next for Melink in the Indian Market?

Moving forward, we are working with our partners to customize Intelli-Hood system designs to meet their site requirements. We look forward to future projects in existing kitchens (retrofits) and also new projects spread across Asia.

If you have a project in India and would like to learn more about Intelli-Hood, please contact me. I live and work in India full-time, and I would welcome the chance to introduce you to Melink’s products. Email me at [email protected].

Why LEED Buildings Make Financial Sense

The University of Notre Dame chose sustainable, LEED-approved construction options and why you should, too.

Recently, the United States Green Building Council (USGBC) awarded the University of Notre Dame with LEED (Leadership in Energy and Environmental Design) Gold certification for the design, construction, and operation of three buildings attached to Notre Dame Stadium. These building are Duncan Student Center, Corbett Family Hall, and O’Neill Hall. Your next statement may be “So what?!” Why should the folks at Notre Dame care, and why should anyone else involved with owning, managing, and operating a commercial building care?

The answer? Money.

LEED Gold Certification seal from the U.S. Green Building Council

According to research from the U.S. Department of Energy, LEED buildings consume 25% less energy and 11% less water than non-LEED buildings. That translates to lower utility bills. If you could build the same facility but pay 11-25% less in operating costs, why would you choose otherwise? And this isn’t even taking into account all the environmental benefits of LEED buildings!

If the decision is made for the non-LEED option, then that is saying you know you could spend less operating this building, but you want to pay more. You know you could improve the income flow of your building, but you choose to make less. Why? 

LEED Buildings: Financial Common Sense

Perhaps the concern is that a LEED building might cost more to construct than a non-LEED building. Depending on where you are building, there are notable tax benefits and incentives from states and municipalities (AKA free money). Choosing to build a non-LEED building is essentially saying you don’t want free money.

Finally, since a commercial building is an investment, the core factors of occupancy rates, lease payments, and long-term tenants are very important to cash flow. Citing the USGBC, LEED buildings retain higher property values than non-LEED buildings. LEED buildings are healthier for the occupants, and 79% of employees say they would choose a job in a LEED building over a non-LEED building. All of these point to greater demand (occupancy), longer term leases, and higher property appreciation. Money, money, money.

LEED Building infographic from U.S. Green Building Council
Source: USGBC

Intelli-Hood: A Solution for LEED Buildings

As I write this from Melink’s own LEED Platinum-certified headquarters, nicknamed HQ1, and across the street from our newly opened HQ2, which is a Zero-Energy Building, I am very happy for Notre Dame. I am also very PROUD that Melink’s Intelli-Hood® variable speed kitchen hood controls were a part of all the conservation measures that helped them achieve this certification. Within the three buildings that achieved LEED status, Intelli-Hood was installed on eight kitchen hoods. Intelli-Hood is now standard on any new hood installations, as well as retrofits, at Notre Dame.

Notre Dame opted for the sustainable, energy efficient, and financially smart option of LEED construction. What will you choose?

 

Intelli-Hood: Preventive Maintenance Is Critically Important (Not Just in Times of Crisis)

Preventive maintenance is truly important to your business’ operation. In the midst of the COVID-19 crisis, many business owners are continuously evaluating their corporate strategies to determine contingency plans. However, as we ride this roller coaster of uncertainty together, it is important to not just strategize for short-term implications of the virus. Now is the time to determine the best steps — like preventive maintenance and reducing the risk of damage to unoccupied buildings — to assist your company on the road to recovery.

And, just like any rollercoaster at an amusement park, the beginning and end have a pinnacle moment. Currently, we are adapting to the changes being implemented to minimize the impact. How we adapt will influence what the pinnacle moment will look like as we return to normalcy.

Of course, it is anticipated by many that financial strains will be incurred by companies across the United States as well as the world. In recent years, the buzzword “resiliency” has swept many energy tradeshows. One thing to add to this — although not glamorous — is the critical importance of executing preventative maintenance on equipment. A few benefits of preventative maintenance include:

  • Maximizing the efficiency of the equipment
  • Reducing downtime cost
  • Avoiding costly, last-ditch-effort service repairs
  • Improving reliability

Therefore, during an economic challenge, it is critically important to the bottom line of any company to have its systems operating correctly.

Intelli-Hood preventive maintenance

Intelli-Hood Preventive Maintenance

Melink Corp has implemented Demand Control Kitchen Ventilation (DCKV) systems across thousands of kitchens as an energy control measure to reduce operating costs. When preventive maintenance is not performed, it can lead to expensive repairs and downtime. Consider these examples…

Systems are designed to “fail safe,” meaning even a simple error can result in all associated fans operating at 100% speed.

One VFD reaches its end-of-life cycle and fails. Instead of replacing the component, Operations decides it is best to bypass the VFD, which now has fans operating 24/7.

These examples have obvious implications to the facility’s bottom line and operating costs.

And taking the idea of preventive maintenance even further, businesses should plan for staff turnover. For example, if a system was installed 15 years ago, the likelihood of the same staff on site is low. Therefore, it is important to have all individuals trained on the equipment to understand standard maintenance operations.

Taking Preventive Maintenance Steps

So how can your business prevent fix-on-fail for DCKV systems and other equipment?

Discuss with manufacturers to see if preventative maintenance services are offered. The cost of a service is low compared to the potential savings that can be lost with a system not operating correctly. The goal is to have a company maximize its bottom line to become financially stable or, should I say, resilient.

Think of preventive maintenance actions as opportunities. Take advantage of the opportunity to complete a preventative maintenance service. This is the time to make adjustments to maximize efficiency and provide training to your team. All this assures your facility’s DCKV system is operating correctly to maximize comfort within the work environment.

We shall all remain hopeful and confident that through working together, we can ride out the roller coaster ride of COVID-19. Melink’s team of technicians is available to help with Intelli-Hood preventive maintenance or troubleshooting. Or maybe you’re wondering if it’s time to discuss a facility upgrade for your aging system. Contact us today.  

Intelli-Hood 3 Faults

Is an Intelli-Hood 3 (IH3) system installed in your commercial kitchen? In this post, we will cover common IH3 system faults.

Clearing IH3 Optic Faults

Optics need to be cleaned periodically. Melink recommends cleaning your Intelli-Hood 3 optic sensors a few times each month. If there is a large amount of buildup on the lens or a simple obstruction in the hood, the touchpad will show an optic fault. 

  • The touchpad will show which hood has the optic fault.
  • Verify there are no obstructions in the hoods.
  • Verify that the optics are aligned. You can do this by navigating to “Status” under the Menu, then “Hood Controllers.” Select the appropriate hood controller using the “Next” button, and you’ll be able to check the voltage displayed as actual signal versus calibrated signal (ex. 1.32v/1.67v).
  • If the touchpad displays “Calibrating” or a low signal (0.02v/1.84v), the hardware is working properly but may have an obstruction causing the signal to be too low.
  • Many optic faults can be prevented through routine hood cleaning and system maintenance.
  • Verify that the cables are also connected tight on the hood controller. If your fault says “Emitter Missing” or “Receiver Missing,” it is indicating a possible bad connection or failed component. Check the connector at each optic sensor for a loose plug or, less commonly, corrosion on the terminals.

Clearing IH3 Temperature Faults

Temperature sensors installed in the hood monitor the temperature of the exhaust air.  The Intelli-Hood 3 system can be programmed to turn on and off automatically by hood temperature. 

Signs of a temperature fault include fans running at 100% and the touchpad stating that a “Temp Fault” is occurring. Therefore, it is important to understand that a temperature fault could turn your system on or off at inappropriate times. In most cases, the fault will simply cause the fan to run 100%, which will allow cooking to continue but prevents you from saving energy.

If you experience an Intelli-Hood 3 temp fault…

  • Make sure that the sensors are clean. It is not always necessary to clean the temperature sensor unless there is a large amounts of grease or build up.
  • Check the connections that go from the temperature probe to the controllers. Also, verify that the number of temp sensors match the number of temp sensors programmed. Under the Menu, select “Status (1)” followed by “Hood Controllers (3).” Then select “Enter.” If a temperature sensor is not connected properly or isn’t working, then it will show as “Missing.”
  • Check for any damaged components.
  • On the hood controller, there are different ports that can be used to connect the cables for temperature sensors. Swapping those may help to get rid of the fault.

If your Intelli-Hood 3 system is still experiencing issues, we encourage you to check our other reference documents.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Intelli-Hood 2 Fault Codes: “My system fault is not in the manual.”

In this post, we will dive into specific fault codes for the Melink Intelli-Hood 2 (IH2) system…

Over the years, Melink Corp has designed and implemented three Intelli-Hood® systems: IH1, IH2 and IH3. Each system has its own specific configurations. While all work on the same basic principles, they DO NOT have the same parts or interfaces. Not sure what system is in your kitchen? Click here.

Intelli-Hood 2 Faults

The IH2 reference guide does not list every possible fault. Instead, it includes a code guide, which can be confusing to interpret, especially if the system has multiple hoods.

Please note that everyday kitchen staff should not be expected to understand these faults; the intention is for a contractor or electrician to be handling fault issues.

Intelli-Hood 2 Fault Code Guide

This code guide should be used for diagnosing IH2 fault codes.

F = Fault

1, 2, 3 or 4 = Identifies the hood number, i.e. H-2 means Hood 2

h-1-e = 100%

H or h = Temperature fault

H = Sensor fault code relating to high temperature or open circuit/high resistance

h= Sensor fault code relating to low temperature or low resistance

U = VFD fault
Note: U faults will normally be followed by another code. If you don’t have a second code, the system is not recognizing the VFD, i.e. no power is going to it.

O = Optic fault
o on bottom of display = Low optic signal
o on top of display = High optic signal or saturation

F-PH = Phone line
Note: Either the phone line connected to it is no longer there or the modem itself is bad.

More Information

Read the following for more information about fault codes:
Temperature and Optic Sensor Faults
VFD Faults

For full code troubleshooting details, consult your IH2 troubleshooting guide.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Understanding Your Intelli-Hood VFD

Melink’s Intelli-Hood® controls modulate the speed of the exhaust and fan motors with variable frequency drives (VFDs). Understanding and knowing how to troubleshoot your Intelli-Hood VFD will make maintenance easier.

The VFDs receive commands from a central controller, which receives its input from the optic and temperature sensors. This post will cover Intelli-Hood’s VFD locations, connections, faults, and troubleshooting.

If you are looking for information on Intelli-Hood optic and temperature sensor troubleshooting, click here.

VFD Locations

The Intelli-Hood’s VFDs are located in a variety of spots, and this will vary from site to site. Some common locations are:

  • End cabinets connected to the hood
Intelli-Hood VFD located in end cabinet mounted to hood
  • Remotely mounted cabinets located in or near the hood
Intelli-Hood VFD located in or near the hood
  • Maintenance or electrical room where service breakers can be found
Intelli-Hood VFD located in mechanical room
  • Above the hoods where the lines for the exhaust fan motors have already been run
  • On the roof (Some facilities require NEMA 3R enclosures, which are waterproof and meant for mounting outside the building. Commonly these units are placed near each fan/motor.)

Verifying VFD Connections

Intelli-Hood VFD connections will also vary depending on the facility and types of drives used. There are generally two options: direct control by the Intelli-Hood system via the Cat5e modbus connection or analog control via the Intelli-Hood system.

The modbus control uses our VFD port on the controller and provides 2-way communication with the drive. This allows the actual drive status/data to be displayed on the Intelli-Hood touchpad. If your IH3 touchpad is displaying “VFD Lost Comms,” it usually means the drive has lost power or the connection has been broken, either physically or by some programming change. Verify the Cat5e cable is securely connected at the drive and system controller and if further investigation is needed, contact our technical support for assistance.

If you have an analog-controlled drive, this normally means the drive was either existing or supplied by others and could not be directly controlled by the Intelli-Hood system. In this case, we are telling the drive when to turn on and how fast to go with analog wire connections but do not receive any feedback data showing drive status or faults. In most cases, when a problem occurs with a fan, you have noticed because the kitchen is noticeably quieter or getting hot and smokey. To check the connections, you will need a multi-meter to check DC voltage and continuity. You will likely want to have your facilities team or electrician look into the issue.

Understanding VFD Faults

The VFD is in place to modulate and protect the motor against incoming power from the service breaker to the VFD and from the VFD to the serving motor.

If a fault is detected, cycle power at the service breaker for approximately 1 minute. The display on the VFD should go blank at this time. After 1 minute, turn the breaker back on and cycle the power to the Intelli-Hood system. If the fault persists, contact Melink Technical Support.

VFD Troubleshooting

The following are examples of advanced troubleshooting you may be able to perform on site. However, if you are uncomfortable working with electrical equipment, contact Melink or your local licensed electrician.

Over Voltage Faults: Check for water in the disconnect. Adjusting the deceleration scale on the VFD may help this issue from motor regeneration on the BUS voltage.

Overload Faults: Check the motor nameplate FLA, VFD Programmed FLA, and the actual AMP draw. If over-amping occurs, reduce the maximum frequency from what is currently programmed. This would suggest that the motor is working harder either due to age, belts that are too tight, or a combination of both.

Under Voltage Faults: Check for voltage on all three phases to make sure that all three legs are steady and at the appropriate voltage. This fault may be caused due to a temporary voltage drop from dirty power or loose connections.

Earth Faults: Check for ground connections. Also check the motor for insulation leaks and proper grounding.

Special Notes for Intelli-Hood VFD Faults

VFD issues are the most common Intelli-Hood troubleshooting issues. For advanced troubleshooting, contact Melink Technical Support. Depending on the circumstances, issues may be resolved through phone support, remote diagnostics, remote control, or a technician may be dispatched to test and replace components based on field conditions.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.

Intelli-Hood Wiring

This post covers how to check your Intelli-Hood wiring connections and how to replace a cable. There are several connections that compose the Intelli-hood system, making this a broad subject.

As you review the following video and pictures, please note that cable colors vary by Intelli-Hood system. Learn more about IH1, IH2, and IH3 differences here.

How to Check Intelli-Hood Wiring Connections

First, it is important to verify that all the cables are shielded and tight with no corrosion. Also, check that the output and input are not switched.

Intelli-Hood wiring connection points
Make sure the cable connections are not loose.

Next, begin to check the connections. The connections go as follows:

  • Optic cables are connected from the sensor to the Air Purge Unit (APU)
  • The APU and temperature sensors are connected to the hood controller and in the correct ports
  • The hood controller can be connected to another hood controller if more than one hood is connected to the system. Also, the hood controller is connected directly to the system controller.
  • There are also connections that go from the drives to the internal operating processor. If there is a communication issue, it could be from bad connections from the drive or the receptacle. If there is more than one drive, plug the drives one to another in a daisy chain, keeping only one drive plugged to the system controller.

Check also that the motor connections are tight and cables shielded. A loose cable will cause a short especially at the disconnect switch. Water or moisture can also cause the system to trip.

How to Replace Intelli-Hood Wiring

In some situations, replacing a cable can be downright easy. However, applications change from site to site and what should be easy may turn out to be time-consuming. For this reason, it is important that when replacing a cable, you are familiar with the system and how it’s set up. If you are uncomfortable with replacing a cable, you should contact Melink or your local certified electrician.

  • When replacing any cable in the system, it is important to determine how it is run. Some sites will have cables inside conduit for every run, and some will have conduit only around the hood area. For systems with multiple hoods or hood controllers, there is a cable that will run between the controllers. For these situations, you may need to have your own termination tools, fish tape, and possibly a second set of hands. Some recommend using the original cable you are removing to pull the new cable. Others recommend using fish tape to avoid kinking or breaking the new cable; they adhere or tape it to the old cable, pull it through the conduit, and then use the fish tape to pull the new cable. When replacing a cable, you should be cautious not to make hard bends or kinks with the cable and not snag the RJ-45 connectors on the ends. Breaks in the shielding can allow unwanted noise from external RF signals and nearby equipment to cause faults in the system.
  • For the Intelli-Hood 3 system, the cables connecting the individual sensors and control boards are made of 24AWG 4-pair, Plenum-rated, and shielded Category 5E cable. These cables are available premade/terminated in several common lengths, as well as in bulk for uncommon runs from our Intelli-hood Technical Support.
  • Common cables that need checked when you have faults are the optic emitter and receiver cables, the temperature probe cables, VFD cables, and the hood controller cables.
  • The optic cables and temp probe cables run to a hood controller and are typically between 5 to 15 ft., depending on the hood size and hood controller location. One hood controller can accept up to four temp probes but only one optic emitter/receiver. From the hood controller to the system control cabinet, there is a “home run” cable. This cable connects the system controller to the hood controllers and all sensors in this chain. There can be multiple home run cables for systems with many hoods, and you will need to verify that you have the correct chain.
Creating a daisy chain between
Daisy chain between variable frequency drives (VFDs)
  • The variable frequency drives (VFD) are also connected to the system controller with cables at the VFD network ports. The VFD network ports can have several VFDs on each chain but one home run for each. Normally VFDs are mounted in a bank of sorts and will daisy together in series using the same cable in a shorter length.

Access Intelli-Hood reference materialsFAQs, and how-to videos. For advanced troubleshooting, contact Melink Technical Support (available 24 hours a day, 7 days a week) via web request or by calling 877-477-4190.